scholarly journals Effects of lipid heterogeneity on model human brain lipid membranes

Soft Matter ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 126-135
Author(s):  
Sze May Yee ◽  
Richard J. Gillams ◽  
Sylvia E. McLain ◽  
Christian D. Lorenz

Cell membranes naturally contain a heterogeneous lipid distribution.

Soft Matter ◽  
2012 ◽  
Vol 8 (20) ◽  
pp. 5501 ◽  
Author(s):  
Seunghwan Jeong ◽  
Sung Ho Ha ◽  
Sang-Hyun Han ◽  
Min-Cheol Lim ◽  
Sun Min Kim ◽  
...  

2014 ◽  
Vol 459 (1) ◽  
pp. 161-170 ◽  
Author(s):  
Axel Hollmann ◽  
Miguel A. R. B. Castanho ◽  
Benhur Lee ◽  
Nuno C. Santos

By studying the interaction of LJ001 and JL103 with lipid membranes, we demonstrate that singlet oxygen produced by both compounds induces changes on lipid properties, preventing the fusion between viral and cell membranes.


2013 ◽  
Vol 19 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Scott D. Campbell ◽  
Karen J. Regina ◽  
Evan D. Kharasch

Endothelial cells forming the blood-brain barrier limit drug access into the brain, due to tight junctions, membrane drug transporters, and unique lipid composition. Passive permeability, thought to mediate drug access, is typically tested using porcine whole-brain lipid. However, human endothelial cell lipid composition differs. This investigation evaluated the influence of lipid composition on passive permeability across artificial membranes. Permeability of CNS-active drugs across an immobilized lipid membrane was determined using three lipid models: crude extract from whole pig brain, human brain microvessel lipid, and microvessel lipid plus cholesterol. Lipids were immobilized on polyvinylidene difluoride, forming donor and receiver chambers, in which drug concentrations were measured after 2 h. The log of effective permeability was then calculated using the measured concentrations. Permeability of small, neutral compounds was unaffected by lipid composition. Several structurally diverse drugs were highly permeable in porcine whole-brain lipid but one to two orders of magnitude less permeable across human brain endothelial cell lipid. Inclusion of cholesterol had the greatest influence on bulky amphipathic compounds such as glucuronide conjugates. Lipid composition markedly influences passive permeability. This was most apparent for charged or bulky compounds. These results demonstrate the importance of using species-specific lipid models in passive permeability assays.


PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001328
Author(s):  
Yu Li ◽  
Jordan S. Orange

Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule–cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell–mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid “shields” against self-destruction.


Author(s):  
Hao Zhang ◽  
Vishnu Baba Sundaresan ◽  
Sergio Salinas ◽  
Robert Northcutt

Conducting polymers possess similarity in ion transport function to cell membranes and perform electro-chemo-mechanical energy conversion. In an in vitro setup, protein-reconstituted bilayer lipid membranes (bioderived membranes)perform similar energy conversion and behave like cell membranes. Inspired by the similarity in ionic function between a conducting polymer membrane and cell membrane, this article presents a thin-film laminated membrane in which alamethicin-reconstituted lipid bilayer membrane is supported on a polypyrrole membrane. Owing to the synthetic and bioderived nature of the components of the membrane, we refer to the laminated membrane as a hybrid bioderived membrane. In this article, we describe the fabrication steps and electrochemical characterization of the hybrid membrane. The fabrication steps include electropolymerization of pyrrole and vesicle fusion to result in a hybrid membrane; and the characterization involves electrical impedance spectroscopy, chronoamperometry and cyclic voltammetry. The resistance and capacitance of BLM have the magnitude of 4.6×109Ω-cm2 and 1.6×10−8 F/cm2.The conductance of alamethicin has the magnitude of 6.4×10−8 S/cm2. The change in ionic conductance of the bioderived membrane is due to the electrical field applied across alamethicin, a voltage-gated protein and produces a measurable change in the ionic concentration of the conducting polymer substrate.


1972 ◽  
Vol 129 (2) ◽  
pp. 229-240 ◽  
Author(s):  
A. Finkelstein

2021 ◽  
Vol 65 (11-12) ◽  
pp. 3-10
Author(s):  
T. P. Taghi-Zada ◽  
Kh. M. Kasumov

The presented review and experimental work provides the data regarding the selective permeability of lipid and cell membranes for ions and organic compounds under the influence of channel-forming polyene compounds with a known molecule structure. It has been shown that the polyene antibiotic levorin А2 with an aromatic structure affects a number of physicochemical parameters of lipid membranes. It was established that the permeability of lipid and cellular membranes for monovalent cations, as well as for monosugar and other neutral molecules increases under the influence of a levorin of А2. The biological activity of levorin А2 and the rate of delivery of molecules to the membranes depend on the surface tension and substrate environment of the membranes. It has been shown that in combination with levorin, dimethyl sulfoxide, and citral, the surface tension of the aqueous solutions surrounding the membrane decreases by half. Comparative data on levorin А2 effects on lipid membranes and muscle cell membranes are presented. It is assumed that levorin А2, being a channel-forming compound, can induce the formation of additional permeability channels in the membranes of muscle cells and, with intense muscle activity, enhance the transfer of cation and energy-dependent substrates through the membranes.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jessica L. Symons ◽  
Kwang-Jin Cho ◽  
Jeffrey T. Chang ◽  
Guangwei Du ◽  
M. Neal Waxham ◽  
...  

Lipid membranes are ubiquitous biological organizers, required for structural and functional compartmentalization of the cell and sub-cellular organelles.


1991 ◽  
Vol 11 (3) ◽  
pp. 131-137 ◽  
Author(s):  
S. E. Glushakova ◽  
A. L. Ksenofontov ◽  
N. V. Fedorova ◽  
L. A. Mazhul ◽  
O. N. Ageeva ◽  
...  

A model is proposed for the study of molecular mechanisms of a low pH-induced interaction of fusion proteins of enveloped viruses and cell membranes. The model consists of large monolamellar liposomes containing ionophore nigericin in their membranes and ectodomains of fusion protein in their inner space. The process of interaction of the protein with the lipid bilayer is triggered by acidification of the liposomal constituents to the pH of fusion with the help of nigericin by adding citric acid to the outer medium. To visualize the protein structural reorganization, the tritium planigraphy was used.Comparison of the values of specific labelling of the proteins and distribution of radioactivity in individual amino acids in control (at neutral pH) and experimental liposome samples (at the pH of fusion) permits to realise the character of protein-membrane interaction. We have obtained the first results in the study of interaction of the bromelain-released soluble ectodomain of the HAXX molecule (BHA)—with the lipid membrane. The observed increase in the protein specific activity and selective increase in the specific activity of hydrophobic amino acids Ile, Phe and Tyr in experimental liposome samples as compared with the controls did not contradict to the conventional concept, that a hydrophobic N-terminus of HA2 subunit of hemagglutinin is responsible for its interaction with lipid membranes.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (7) ◽  
pp. 536-540 ◽  
Author(s):  
Susan Daniel ◽  
Fernando Albertorio ◽  
Paul S. Cremer

Solid-supported lipid bilayers hold strong promise as bioanalytical sensor platforms because they readily mimic the same multivalent ligand-receptor interactions that occur in real cells. Such devices might be used to monitor air and water quality under real-world conditions. At present, however, supported membranes are considered too fragile to survive the harsh environments typically required for non-laboratory use. Specifically, they lack the resiliency to withstand air exposure and the thermal and mechanical stresses associated with device transport, storage, and continuous use over long periods of time. Several successful strategies are now emerging to make supported membranes tougher. These strategies incorporate mimics of the cytoskeleton and glycocalyx of real cell membranes. The promise of these more robust lipid bilayer architectures indicates that future materials should be designed to more fully resemble the actual structure of cell membranes.


Sign in / Sign up

Export Citation Format

Share Document