scholarly journals Degranulation enhances presynaptic membrane packing, which protects NK cells from perforin-mediated autolysis

PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001328
Author(s):  
Yu Li ◽  
Jordan S. Orange

Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule–cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell–mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid “shields” against self-destruction.

2013 ◽  
Vol 24 (23) ◽  
pp. 3721-3735 ◽  
Author(s):  
Amit Tuli ◽  
Jerome Thiery ◽  
Ashley M. James ◽  
Xavier Michelet ◽  
Mahak Sharma ◽  
...  

Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.


2007 ◽  
Vol 204 (10) ◽  
pp. 2285-2291 ◽  
Author(s):  
Milena M. Andzelm ◽  
Xi Chen ◽  
Konrad Krzewski ◽  
Jordan S. Orange ◽  
Jack L. Strominger

Natural killer (NK) cell cytotoxicity involves the formation of an activating immunological synapse (IS) between the effector and target cell through which granzymes and perforin contained in lytic granules are delivered to the target cell via exocytosis. Inhibition of nonmuscle myosin II in human NK cells with blebbistatin or ML-9 impaired neither effector–target cell conjugation nor formation of a mature activating NK cell IS (NKIS; formation of an actin ring and polarization of the microtubule-organizing center and cytolytic granules to the center of the ring). However, membrane fusion of lytic granules, granzyme secretion, and NK cell cytotoxicity were all effectively blocked. Specific knockdown of the myosin IIA heavy chain by RNA interference impaired cytotoxicity, membrane fusion of lytic granules, and granzyme secretion. Thus, myosin IIA is required for a critical step between NKIS formation and granule exocytosis.


2020 ◽  
Vol 117 (38) ◽  
pp. 23717-23720 ◽  
Author(s):  
Ashley R. Ambrose ◽  
Khodor S. Hazime ◽  
Jonathan D. Worboys ◽  
Olatz Niembro-Vivanco ◽  
Daniel M. Davis

Natural killer (NK) cells form immune synapses to ascertain the state of health of cells they encounter. If a target cell triggers NK cell cytotoxicity, lytic granules containing proteins including perforin and granzyme B, are secreted into the synaptic cleft inducing target cell death. Secretion of these proteins also occurs from activated cytotoxic T lymphocytes (CTLs) where they have recently been reported to complex with thrombospondin-1 (TSP-1) in specialized structures termed supramolecular attack particles (SMAPs). Here, using an imaging method to define the position of each NK cell after removal, secretions from individual cells were assessed. NK cell synaptic secretion, triggered by ligation of NKp30 or NKG2D, included vesicles and SMAPs which contained TSP-1, perforin, and granzyme B. Individual NK cells secreted SMAPs, CD63+ vesicles, or both. A similar number of SMAPs were secreted per cell for both NK cells and CTLs, but NK cell SMAPs were larger. These data establish an unexpected diversity in NK cell synaptic secretions.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Justin T Gunesch ◽  
Amera L Dixon ◽  
Tasneem AM Ebrahim ◽  
Melissa M Berrien-Elliott ◽  
Swetha Tatineni ◽  
...  

Human natural killer (NK) cells are defined as CD56+CD3−. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Matteo Santoni ◽  
Federica Maggi ◽  
Maria Beatrice Morelli ◽  
...  

Natural killer (NK) cells are a main subset of innate lymphocytes that contribute to host immune protection against viruses and tumors by mediating target cell killing and secreting a wide array of cytokines. Their functions are finely regulated by a balance between activating and inhibitory receptors and involve also adhesive interactions. Mechanotransduction is the process in which physical forces sensed by mechanosensors are translated into chemical signaling. Herein, we report findings on the involvement of this mechanism that is mainly mediated by actin cytoskeleton, in the regulation of NK cell adhesion, migration, tissue infiltration and functions. Actin represents the structural basis for NK cell immunological synapse (NKIS) and polarization of secretory apparatus. NK-target cell interaction involves the formation of both uropods and membrane nanotubes that allow target cell interaction over long distances. Actin retrograde flow (ARF) regulates NK cell signaling and controls the equilibrium between activation versus inhibition. Activating NKIS is associated with rapid lamellipodial ARF, whereas lower centripetal actin flow is present during inhibitory NKIS where β actin can associate with the tyrosine phosphatase SHP-1. Overall, a better knowledge of mechanotransduction might represent a future challenge: Realization of nanomaterials tailored for NK cells, would be important to translate in vitro studies in in vivo new immunotherapeutic approaches.


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


1995 ◽  
Vol 79 (3) ◽  
pp. 732-737 ◽  
Author(s):  
S. J. Won ◽  
M. T. Lin

The effects of different ambient temperatures (Ta) on the splenic natural killer (NK) cell activity, effector-target cell conjugation activity, and NK cell numbers were assessed in male inbred C3H/HeNCrj mice (7–10 wk old). The splenic NK cytotoxic activities were examined in a 4-h 51Cr release assay in mouse spleen cells that were obtained 1, 2, 4, 8, or 16 days after exposure to Ta of 22, 4, or 35 degrees C. The percentage of conjugating lymphocytes was calculated by counting the number of single lymphocytes bound to single target cells per 400 effector cells. The numbers of NK cells were expressed by the percentage of 5E6-positive cells. The 5E6 identifies only a subset of NK cells. It was found that the splenic NK cell activity, the effector-target cell conjugation activity, or the NK cell number began to fall 1 day after cold (Ta 4 degrees C) or heat (Ta 35 degrees C) stress. After a 16-day period of either cold or heat exposure, the fall in the splenic NK cell activity, the effector-target cell conjugation activity, or the number of 5E6-positive subsets of NK cells was still evident. Compared with those of the control group (Ta 22 degrees C), the cold-stressed mice had higher adrenal cortisol concentration and lower colonic temperature, whereas the heat-stressed animals had higher adrenal cortisol concentration and higher colonic temperature during a 16-day period of thermal exposure. However, neither cold nor heat stress affected both the body weight gain and the spleen weight in our mice.


1993 ◽  
Vol 178 (4) ◽  
pp. 1321-1336 ◽  
Author(s):  
V Litwin ◽  
J Gumperz ◽  
P Parham ◽  
J H Phillips ◽  
L L Lanier

Prior studies using polyclonal populations of natural killer (NK) cells have revealed that expression of certain major histocompatibility complex (MHC) class I molecules on the membrane of normal and transformed hematopoietic target cells can prevent NK cell-mediated cytotoxicity. However, the extent of clonal heterogeneity within the NK cell population and the effect of self versus non-self MHC alleles has not been clearly established. In the present study, we have generated more than 200 independently derived human NK cell clones from four individuals of known human histocompatibility leukocyte antigens (HLA) type. NK clones were analyzed for cytolytic activity against MHC class I-deficient Epstein Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCL) stably transfected with several HLA-A, -B, or -C genes representing either self or non-self alleles. All NK clones killed the prototypic HLA-negative erythroleukemia K562 and most lysed the MHC class I-deficient C1R and 721.221 B-LCL. Analysis of the panel of HLA-A, -B, and -C transfectants supported the following general conclusions. (a) Whereas recent studies have suggested that HLA-C antigens may be preferentially recognized by NK cells, our findings indicate that 70% or more of all NK clones are able to recognize certain HLA-B alleles and many also recognize HLA-A alleles. Moreover, a single NK clone has the potential to recognize multiple alleles of HLA-A, HLA-B, and HLA-C antigens. Thus, HLA-C is not unique in conferring protection against NK lysis. (b) No simple patterns of HLA specificity emerged. Examination of a large number of NK clones from a single donor revealed overlapping, yet distinct, patterns of reactivity when a sufficiently broad panel of HLA transfectants was examined. (c) Both autologous and allogeneic HLA antigens were recognized by NK clones. There was neither evidence for deletion of NK clones reactive with self alleles nor any indication for an increased frequency of NK clones recognizing self alleles. (d) With only a few exceptions, protection conferred by transfection of HLA alleles into B-LCL was usually not absolute. Rather a continuum from essentially no protection for certain alleles (HLA-A*0201) to very striking protection for other alleles (HLA-B*5801), with a wide range of intermediate effects, was observed. (e) Whereas most NK clones retained a relatively stable HLA specificity, some NK clones demonstrated variable and heterogeneous activity over time. (f) NK cell recognition and specificity cannot be explained entirely by the presence or absence of HLA class I antigens on the target cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-33
Author(s):  
Christopher M Borges ◽  
Kevin Wasko ◽  
Jared M Nasser ◽  
Kelly Donahue ◽  
Amanda Pfautz ◽  
...  

Natural killer (NK) cells distinguish tumor from healthy tissue via multiple mechanisms, including recognition of stress ligands and loss of MHC class I expression. For example, KIR mismatching enables allogenic NK cells to respond to MHC positive tumors in a similar manner to MHC negative tumors, making allogeneic NK cell therapy a promising approach for broad oncology indications. Accordingly, allogenic human HD-NK cells, including gene-modified cells, have demonstrated an impressive safety and efficacy profile when administered to patients with advanced hematologic malignancies. However, effector function of allogeneic NK cells can be diminished by the lack of functional persistence, as well as tumor-intrinsic immunosuppressive mechanisms, such as production of TGF-β. To this end, we developed a next-generation allogeneic NK cell therapy using CRISPR-Cas12a gene editing to enhance NK cell function through knockout of the genes CISH and TGFBR2. Both single and simultaneous targeting (DKO) of TGFBR2 and CISH in NK cells using CRISPR-Cas12a produced in/dels at both targets in greater than 80% of NK cells, with greater than 90% of edited NK cells viable at 72 hours post-editing. Importantly, we find that DKO NK cells do not phosphorylate the SMAD2/3 protein downstream of the TGF-b receptor complex and demonstrate increased phosphorylation of pSTAT3 and pSTAT5 upon IL-15 stimulation, consistent with protein level knockout of TGFBR2 and CISH. To determine whether DKO NK cells exhibited superior function relative to control NK cells, we first measured the ability of DKO NK cells to kill Nalm6 cells (adult B cell ALL) relative to unedited control NK cells. We find that in the presence of exogenous TGF-b, DKO NK cells demonstrate improved cytotoxicity against Nalm6 tumor targets by delaying tumor re-growth in comparison to control NK cells. To better characterize the ability of DKO NK cells to kill tumor cells, we developed an in vitro serial killing assay. In this long-duration assay, up to 30 days, control and DKO NK cells (grown in the presence of IL-15) were challenged every 48 hours with a new bolus of Nalm6 tumor targets. Both DKO and unedited NK cells control Nalm6 target cell growth for greater than 18 days (9 additions of new Nalm6 target cells), demonstrating a surprising ability for the same NK cells to serially kill new Nalm6 target cells for a prolonged period of time in vitro. We find that DKO NK cells produce higher levels of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay, suggesting that DKO NK cells can continue to produce these inflammatory cytokines even after serial killing. As many tumors, including hematologic malignancies, have high concentrations of TGF-β in their microenvironments, we next tested the ability of DKO NK cells to control the growth of Nalm6 cells in our serial killing assay in the presence of TGF-b. 10ng/mL TGF-β was added at the start of the assay as well as at each addition of new Nalm6 target cells. We observed that control NK cells fail to restrict Nalm6 target cell growth beyond 4 days (after 1 addition of new Nalm6 target cells) whereas DKO NK cells control Nalm6 target cell growth for greater than 18 days (after 9 additions of new Nalm6 target cells). Similar to the serial killing assay without TGF-b, we find that DKO NK cells produce higher concentrations of IFN-γ and TNF-α relative to control NK cells over the duration of the entire serial killing assay. Broadening our repertoire of target cells beyond B cell malignancies is now in progress, including the AML-like cell lines HL-60 and THP-1, the multiple myeloma cell line RPMI 8226, and various solid tumor targets. In summary, using CRISPR-Cas12a we demonstrated highly efficient gene editing of primary human NK cells at two unique targets designed to augment NK cell anti-tumor activity across a variety of malignancies. Most significantly, we demonstrate sustained anti-tumor serial-killing activity in the presence of the potent immunosuppressive cytokine TGF-β. Together, the increased overall effector function of CISH/TGFBR2 DKO primary human NK cells and their ability to serial kill, support their development as a potent allogeneic cell-based medicine for cancer. This potential medicine, termed EDIT-201, is being advanced to clinical study. Disclosures Borges: Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wasko:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Nasser:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Donahue:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Pfautz:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Antony:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Leary:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Sexton:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Morgan:Editas Medicine: Current Employment, Current equity holder in publicly-traded company. Wong:Editas Medicine: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4926-4926
Author(s):  
Xiangshan Cao ◽  
Jianyong Li

Abstract The KIRs were knew as natural killer (NK) cell inhibitory receptors with specificity for HLA molecules on their cellular targets. We investigated NK cell activation on the number of matches between cell killer immunoglobulin-like receptor (KIR) gene and HLA-Cw, and the level of inhibitory KIRs expressed on NK cell surface and the cytotoxicity of NK cell against AML leukemic cells in vitro. NK cell were isolated and purified from 27 healthy donors by isolation kit, Target cells were blasts derived from bone marrow of 30 patients with AML.Inhibitory KIRs expression knew as CD158a, CD158b was analyzed by flow cytometry to estimate the percentage of NK cells that could be inhibited by the HLA-Cw ligands..KIR and HLA gene typing were performed by PCR –SSP. from donors and patients respectively. NK cytotoxicity against AML leukemic cells demonstrated by MTT which showed the correlation between NK cytotoxicity and the number of KIR/HLA matches. the NK-susceptible K562 cell line which lacks HLA class I expression, was used as a positive control target in all cytotoxicity assays, autologous non-NK cell was used as negative control target cell. the cytotoxicity assays was performed in E:T 50:1 20:1 10:1 5:1 2.5:1. Results demonstrated the less number of KIR/HLA-Cw matches, the more NK cells are activated..0 match of NK cell/target cell KIR/HLA-Cw, cytotoxicity was (50.66±8.40)%,1 match and 2 matches were (38.28±6.71)%, (19.74±4.15)%, F=20.226, P<0.001. NK cells expressed KIRs also had relationship with cytotoxicity, inhibitory KIRs expressed >50%, the cytotoxicity is 10%, inhibitory KIRs expressed 20%–50%, the cytotoxicity is 20%, inhibitory KIRs <25%, the cytotoxicity is 55%, F=16.276,p<0.001. Therefore these data indicate NK cell kill AML leukemic cells mechanism follow KIR/HLA-Cw mismatch theory, the level of inhibitory KIRs expressed on NK cell surface showed the percentage of NK cells that could be inhibited by the HLA-Cw ligands. Key words: KIR NK cell CD158 HLA-Cw


Sign in / Sign up

Export Citation Format

Share Document