Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells

2020 ◽  
Vol 8 (44) ◽  
pp. 23607-23616
Author(s):  
Shao-Ku Huang ◽  
Ying-Chiao Wang ◽  
Wei-Chen Ke ◽  
Yu-Ting Kao ◽  
Nian-Zu She ◽  
...  

Effects of the CPTA-passivated SnO2 electron transport layer on photocarrier dynamics in perovskite solar cells revealed by ultrafast pump-probe technique.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6335
Author(s):  
Xinchen Dai ◽  
Pramod Koshy ◽  
Charles Christopher Sorrell ◽  
Jongchul Lim ◽  
Jae Sung Yun

The present work applies a focal point of materials-related issues to review the major case studies of electron transport layers (ETLs) of metal halide perovskite solar cells (PSCs) that contain graphene-based materials (GBMs), including graphene (GR), graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs). The coverage includes the principal components of ETLs, which are compact and mesoporous TiO2, SnO2, ZnO and the fullerene derivative PCBM. Basic considerations of solar cell design are provided and the effects of the different ETL materials on the power conversion efficiency (PCE) have been surveyed. The strategy of adding GBMs is based on a range of phenomenological outcomes, including enhanced electron transport, enhanced current density-voltage (J-V) characteristics and parameters, potential for band gap (Eg) tuning, and enhanced device stability (chemical and environmental). These characteristics are made complicated by the variable effects of GBM size, amount, morphology, and distribution on the nanostructure, the resultant performance, and the associated effects on the potential for charge recombination. A further complication is the uncertain nature of the interfaces between the ETL and perovskite as well as between phases within the ETL.


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


Author(s):  
Zafar Arshad ◽  
Asif Hussain Khoja ◽  
Sehar Shakir ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document