Photoinduced cationic polycondensation in solid state towards ultralow band gap conjugated polymers

2020 ◽  
Vol 8 (21) ◽  
pp. 7026-7033 ◽  
Author(s):  
Xunshan Liu ◽  
Valerii Sharapov ◽  
Zhen Zhang ◽  
Forwood Wiser ◽  
Mohammad Ahmad Awais ◽  
...  

A photoinduced cationic polycondensation towards the synthesis of homopolymer PTT.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1118
Author(s):  
Ibrahim Mustapha Alibe ◽  
Khamirul Amin Matori ◽  
Mohd Hafiz Mohd Zaid ◽  
Salisu Nasir ◽  
Ali Mustapha Alibe ◽  
...  

The contemporary market needs for enhanced solid–state lighting devices has led to an increased demand for the production of willemite based phosphors using low-cost techniques. In this study, Ce3+ doped willemite nanoparticles were fabricated using polymer thermal treatment method. The special effects of the calcination temperatures and the dopant concentration on the structural and optical properties of the material were thoroughly studied. The XRD analysis of the samples treated at 900 °C revealed the development and or materialization of the willemite phase. The increase in the dopant concentration causes an expansion of the lattice owing to the replacement of larger Ce3+ ions for smaller Zn2+ ions. Based on the FESEM and TEM micrographs, the nanoparticles size increases with the increase in the cerium ions. The mean particles sizes were estimated to be 23.61 nm at 1 mol% to 34.02 nm at 5 mol% of the cerium dopant. The optical band gap energy of the doped samples formed at 900 °C decreased precisely by 0.21 eV (i.e., 5.21 to 5.00 eV). The PL analysis of the doped samples exhibits a strong emission at 400 nm which is ascribed to the transition of an electron from localized Ce2f state to the valence band of O2p. The energy level of the Ce3+ ions affects the willemite crystal lattice, thus causing a decrease in the intensity of the green emission at 530 nm and the blue emission at 485 nm. The wide optical band gap energy of the willemite produced is expected to pave the way for exciting innovations in solid–state lighting applications.


2003 ◽  
Vol 21 (1-3) ◽  
pp. 199-203 ◽  
Author(s):  
Do-Hoon Hwang ◽  
Nam Sung Cho ◽  
Byung-Jun Jung ◽  
Hong-Ku Shim ◽  
Jeong-Ik Lee ◽  
...  

1991 ◽  
Vol 44 (12) ◽  
pp. 6002-6010 ◽  
Author(s):  
J. L. Brédas ◽  
C. Quattrocchi ◽  
J. Libert ◽  
A. G. MacDiarmid ◽  
J. M. Ginder ◽  
...  
Keyword(s):  

Polymer ◽  
2008 ◽  
Vol 49 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Tsuyoshi Michinobu ◽  
Kensuke Okoshi ◽  
Haruka Osako ◽  
Hiroe Kumazawa ◽  
Kiyotaka Shigehara

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1670
Author(s):  
Jan K. Zaręba ◽  
Marcin Nyk ◽  
Marek Samoć

Nonlinear optical (NLO) pigments are compounds insoluble in solvents that exhibit phenomena related to nonlinear optical susceptibilities (χ(n) where n = 2,3,...), e.g., two-photon absorption (2PA) which is related to the imaginary part of χ(3). Determination of spectrally-resolved 2PA properties for NLO pigments of macromolecular nature, such as coordination polymers or crosslinked polymers, has long been a challenging issue due to their particulate form, precluding characterizations with standard techniques such as Z-scan. In this contribution, we investigate thus far unknown spectrally-resolved 2PA properties of a new subclass of NLO pigments—crosslinked conjugated polymers. The studied compounds are built up from electron-donating (triphenylamine) and electron-withdrawing (2,2’-bipyridine) structural fragments joined by vinylene (Pol1) or vinyl(4-ethynylphenyl) (Pol2) aromatic bridges. 2PA properties of these polymers have been characterized in broad spectral range by specially modified two-photon excited fluorescence (TPEF) techniques: solid state TPEF (SSTPEF) and internal standard TPEF (ISTPEF). The impact of self-aggregation of aromatic backbones on the 2PA properties of the polymers has been evaluated through extended comparisons of NLO parameters, i.e., 2PA cross sections (σ2) and molar-mass normalized 2PA merit factors (σ2/M) with those of small-molecular model compounds: Mod1 and Mod2. By doing this, we found that the 2PA response of Pol1 and Pol2 is improved 2–3 times versus respective model compounds in the solid state form. Further comparisons with 2PA results collected for diluted solutions of Mod1 and Mod2 supports the notion that self-aggregated structure contributes to the observed enhancement of 2PA response. On the other hand, it is clear that Pol1 and Pol2 suffer from aggregation-caused quenching phenomenon, well reflected in time-resolved fluorescence properties as well as in relatively low values of quantum yield of fluorescence. Accordingly, despite improved intrinsic 2PA response, the effective intensity of two-photon excited emission for Pol1 and Pol2 is slightly lower relative to Mod1 and Mod2. Finally, we explore temperature-resolved luminescence properties under one- (377 nm), two- (820 nm), and three-photon excitation (1020 nm) conditions of postsynthetically Eu3+-functionalized material, Pol1-Eu, and discuss its suitability for temperature sensing applications.


2020 ◽  
Vol 44 (30) ◽  
pp. 13100-13107
Author(s):  
Changguo Xue ◽  
Yu Tang ◽  
Shihui Liu ◽  
He Feng ◽  
Shiqin Li ◽  
...  

Two conjugated polymers with different combinations of two thiazoles were synthesized to study their photovoltaic performances.


Sign in / Sign up

Export Citation Format

Share Document