Hole transport layer-free deep-blue OLEDs with outstanding colour purity and high efficiency

2020 ◽  
Vol 8 (27) ◽  
pp. 9184-9188 ◽  
Author(s):  
Fei Huang ◽  
Hongli Liu ◽  
Wei Sun ◽  
Xianggao Li ◽  
Shirong Wang

Through suppressing excimer emission by modifying ITO, simplified-structured blue OLEDs achieved extremely high deep-blue emission, outstanding colour purity and high efficiency.

2021 ◽  
Author(s):  
Hans Köbler ◽  
Mark V. Khenkin ◽  
Rajarshi Roy ◽  
Nga Phung ◽  
Quiterie Emery ◽  
...  

Abstract Over the past decade, perovskite solar cells have travelled an amazing way towards high efficiency. However, a major roadblock remaining is the operational stability, while achieving technological maturity and proving real-world stability is crucial to gain trust among investors. In that sense, it is of high interest to be able to predict the operational lifetime, which needs to be in the range of years or decades, within an experimentally reasonable timeframe. Yet, peculiarities of perovskite solar cells’ ageing behaviour lead to severe difficulties in translating the results of indoor tests to their outdoor counterpart. In particular, transient processes cause diverse results among different ageing tests.Here, for the first time, we show a complete set of constant illumination indoor testing, cycled illumination indoor testing and real-world outdoor testing on equal in-house devices. Exemplarily, we compare two different types of perovskite solar cells, in which only the hole-transport layer is varied. Despite this small change, the devices show distinctly different transient behaviour. In either case, the commonly used constant illumination experiments fail to predict the outdoor behaviour of the cell. Yet, we observe a good correlation between the cycled illumination test and the outdoor behaviour of one of the two solar cells, while this is not the case for the other system. This result highlights the urge for further research on how to perform meaningful accelerated indoor tests to predict the outdoor lifetime of perovskite solar cells.


2018 ◽  
Vol 59 ◽  
pp. 140-148 ◽  
Author(s):  
Saqib Rafique ◽  
Shahino Mah Abdullah ◽  
Javed Iqbal ◽  
Asim Jilani ◽  
Sajith Vattamkandathil ◽  
...  

Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 904-908 ◽  
Author(s):  
Qifeng Han ◽  
Yao-Tsung Hsieh ◽  
Lei Meng ◽  
Jyh-Lih Wu ◽  
Pengyu Sun ◽  
...  

The combination of hybrid perovskite and Cu(In,Ga)Se2 (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.


MRS Advances ◽  
2019 ◽  
Vol 4 (31-32) ◽  
pp. 1779-1786 ◽  
Author(s):  
Rohit Ashok Kumar Yadav ◽  
Mangey Ram Nagar ◽  
Deepak Kumar Dubey ◽  
Sujith Sudheendran Swayamprabha ◽  
Jwo-Huei Jou

ABSTRACTOrganic light-emitting diodes (OLEDs) have attracted huge concern because of their intrinsic characteristics and ability to reach the pinnacle in the field of high-quality flat-panel displays and energy-efficient solid-state lighting. High-efficiency is always a key crux for OLED devices being energy-saving and longer life-span. OLEDs have encountered enormous difficulties in meeting the requirements for large-sized devices due to a major limitation in vacuum thermal evaporation technology. In multilayered OLED devices, the characteristics of the charge injection/transport layer is a crucial factor for the operating-voltage, power-efficiency and stability of the device. Transition metal oxides have shown great potential owing to their wide range of possible energy level alignments, balanced charge injection, and improvement of carrier mobilities. In this study, we report a solution-processed blend V2O5-PEDOT:PSS hole-injection/hole-transport layer (HIL/HTL) for efficient orange phosphorescent OLEDs. The electroluminescent characteristics of blend V2O5-PEDOT:PSS based devices were studied with the structure ITO/V2O5-PEDOT:PSS/CBP:Ir(2-phq)3/TPBi/LiF/Al. The V2O5-PEDOT:PSS based OLEDs displayed relatively higher device performance and low roll-off than that of the counter PEDOT:PSS device in terms of a maximum luminance of 17,670 cd m-2, power efficiency of 19.4 lm W-1, external quantum efficiency of 8.7%, and more importantly, low turn-on voltage. These results demonstrate an alternative approach based on metal oxide/organic blend HIL/HTL as a substitute of PEDOT:PSS for high-efficiency solution process OLEDs.


2019 ◽  
Vol 7 (24) ◽  
pp. 7288-7298 ◽  
Author(s):  
Ju Ho Lee ◽  
Young Wook Noh ◽  
In Su Jin ◽  
Sang Hyun Park ◽  
Jae Woong Jung

Current–voltage hysteresis is a critical issue that impacts the photovoltaic performance of perovskite solar cells, and thus, it is imperative to develop high-efficiency perovskite solar cells without hysteresis behavior.


Sign in / Sign up

Export Citation Format

Share Document