Signal-on electrochemical DNA (E-DNA) sensor for accurate quantification of nicking-assisted rolling circle amplification (N-RCA) products with attomolar sensitivity

2021 ◽  
Author(s):  
Mengmeng Li ◽  
Dandan Li ◽  
Guidan Huang ◽  
Linying Zhou ◽  
Qilin Wen ◽  
...  

Rolling circle amplification (RCA) has become increasingly important amplification technique in nucleic acid analysis, immunoassay, and molecular diagnosis due to its high specificity and sensitivity. However, the accurate quantification of...

The Analyst ◽  
2015 ◽  
Vol 140 (1) ◽  
pp. 74-78 ◽  
Author(s):  
Xiaoli Zhu ◽  
Chang Feng ◽  
Bin Zhang ◽  
Hui Tong ◽  
Tao Gao ◽  
...  

An isothermal nucleic acid amplification technique termed as netlike rolling circle amplification is proposed. Dense and uniform network morphology of amplified products is first observed, suggesting the ultrahigh amplification efficiency.


RSC Advances ◽  
2018 ◽  
Vol 8 (48) ◽  
pp. 27375-27381 ◽  
Author(s):  
Jian Gong ◽  
Yishuai Li ◽  
Ting Lin ◽  
Xiaoyan Feng ◽  
Li Chu

The MPRP system for SNP discrimination was developed, which showed high specificity and sensitivity for multiplex detection of tumor-related mutations.


2017 ◽  
Vol 91 ◽  
pp. 136-142 ◽  
Author(s):  
Hai Shi ◽  
Xiaoxia Mao ◽  
Xiaoxia Chen ◽  
Zihan Wang ◽  
Keming Wang ◽  
...  

2021 ◽  
Author(s):  
Vandana Kuttappan Nair ◽  
Chandrika Sharma ◽  
Mrittika Sengupta ◽  
Souradyuti Ghosh

<b>Layman Summary: </b>Rolling circle amplification (RCA) is a popular and extensively used bioanalytical tool. Like any nucleic acid amplifications, non-specific amplification may occur in it and risk generating false positive readouts. The work described in the manuscript investigates non-specific amplification in RCA as a function of ligation and exonuclease digestion assays during the synthesis of circular DNA. In particular, it investigates and compares the role of three different ligation techniques, namely splint-padlock ligation, cohesive end (sticky end ligation), and self-annealing ligation. In addition, it also probes the role of single exonuclease vs dual exonuclease digestions. We employed real time fluorescence to quantify the effect of these factors. Finally, our work hypothesizes the possible origins of non-specific amplification in RCA.


2018 ◽  
Vol 64 (12) ◽  
pp. 1704-1712 ◽  
Author(s):  
Felix Neumann ◽  
Iván Hernández-Neuta ◽  
Malin Grabbe ◽  
Narayanan Madaboosi ◽  
Jan Albert ◽  
...  

Abstract BACKGROUND Influenza remains a constant threat worldwide, and WHO estimates that it affects 5% to 15% of the global population each season, with an associated 3 to 5 million severe cases and up to 500000 deaths. To limit the morbidity and the economic burden of influenza, improved diagnostic assays are needed. METHODS We developed a multiplexed assay for the detection and subtyping of seasonal influenza based on padlock probes and rolling circle amplification. The assay simultaneously targets all 8 genome segments of the 4 circulating influenza variants—A(H1N1), A(H3N2), B/Yamagata, and B/Victoria—and was combined with a prototype cartridge for inexpensive digital quantification. Characterized virus isolates and patient nasopharyngeal swabs were used for assay design and analytical validation. The diagnostic performance was assessed by blinded testing of 50 clinical samples analyzed in parallel with a commercial influenza assay, Simplexa™ Flu A/B & RSV Direct. RESULTS The assay had a detection limit of 18 viral RNA copies and achieved 100% analytical and clinical specificity for differential detection and subtyping of seasonal circulating influenza variants. The diagnostic sensitivity on the 50 clinical samples was 77.5% for detecting influenza and up to 73% for subtyping seasonal variants. CONCLUSIONS We have presented a proof-of-concept padlock probe assay combined with an inexpensive digital readout for the detection and subtyping of seasonal influenza strains A and B. The demonstrated high specificity and multiplexing capability, together with the digital quantification, established the assay as a promising diagnostic tool for seasonal influenza.


2007 ◽  
Vol 22 (7) ◽  
pp. 1236-1244 ◽  
Author(s):  
Erik L. McCarthy ◽  
Lee E. Bickerstaff ◽  
Mauricio Pereira da Cunha ◽  
Paul J. Millard

Sign in / Sign up

Export Citation Format

Share Document