In situ creation of multi-metallic species inside porous silicate materials with tunable catalytic properties

2021 ◽  
Author(s):  
Yang-Yang Liu ◽  
Guo-Peng Zhan ◽  
Chuan-De Wu

Porous metal silicate (PMS) material PMS-11, consisting of uniformly distributed multi-metallic species inside the pores, is synthesized by using a discrete multi-metal coordination complex as the template, demonstrating high catalytic...

2015 ◽  
Vol 642 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Qing-Feng Yang ◽  
Hong-Cun Bai ◽  
Bing Li ◽  
Min Luo ◽  
Juan Jin ◽  
...  

2021 ◽  
Vol 23 ◽  
pp. 101030
Author(s):  
Kitirote Wantala ◽  
Totsaporn Suwannaruang ◽  
Janthip Palalerd ◽  
Prae Chirawatkul ◽  
Narong Chanlek ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Ioanna Christodoulou ◽  
Tom Bourguignon ◽  
Xue Li ◽  
Gilles Patriarche ◽  
Christian Serre ◽  
...  

In recent years, Metal-Organic Frameworks (MOFs) have attracted a growing interest for biomedical applications. The design of MOFs should take into consideration the subtle balance between stability and biodegradability. However, only few studies have focused on the MOFs’ stability in physiological media and their degradation mechanism. Here, we investigate the degradation of mesoporous iron (III) carboxylate MOFs, which are among the most employed MOFs for drug delivery, by a set of complementary methods. In situ AFM allowed monitoring with nanoscale resolution the morphological, dimensional, and mechanical properties of a series of MOFs in phosphate buffer saline and in real time. Depending on the synthetic route, the external surface presented either well-defined crystalline planes or initial defects, which influenced the degradation mechanism of the particles. Moreover, MOF stability was investigated under different pH conditions, from acidic to neutral. Interestingly, despite pronounced erosion, especially at neutral pH, the dimensions of the crystals were unchanged. It was revealed that the external surfaces of MOF crystals rapidly respond to in situ changes of the composition of the media they are in contact with. These observations are of a crucial importance for the design of nanosized MOFs for drug delivery applications.


1997 ◽  
Vol 51 (1) ◽  
pp. 39
Author(s):  
M.G. Galuzinskiy

2015 ◽  
Vol 56 (5) ◽  
pp. 694-702 ◽  
Author(s):  
A. D. Pomogailo ◽  
K. S. Kalinina ◽  
N. D. Golubeva ◽  
G. I. Dzhardimalieva ◽  
S. I. Pomogailo ◽  
...  

2018 ◽  
Vol 6 (24) ◽  
pp. 11370-11376 ◽  
Author(s):  
Qinglong Fu ◽  
Pan Yang ◽  
Jingchuan Wang ◽  
Hefang Wang ◽  
Lijun Yang ◽  
...  

Ni nanofibers have been prepared by a vacuum thermal reduction method, and further used as efficient catalysts for hydrogen generation from hydrous hydrazine decomposition reaction.


2021 ◽  
Vol 25 ◽  
Author(s):  
Luis Daniel Pedro-Hernández ◽  
Marcos Martínez-García

: Dendrimers are highly branched three-dimensional macromolecules with a highly controlled structure, a single molecular weight, numerous controllable dendritic branches and peripheral functionalities, as well as the tendency to adopt an ellipsoid or spheroid shape once a certain size is reached. These features have made them attractive for application in pharmaceutical and medicinal chemistry in gene transfection, as medical imaging agents, and as drug carriers in potential drug delivery agents. The incorporation of metallic species into dendritic molecules has also been reported; the focus has been on organometallic dendrimers with metallic species only at specific positions of the molecules, such as the core, dendritic branches and the periphery, studied for their magnetic, electronic, and photo-optical or catalytic properties. Dendrimers have been investigated for optoelectronic applications (adsorption, emission, laser emission, nonlinear optics) through the encapsulation of active units by dendritic branches, core and peripheral. This review briefly discusses their use in nanomedicine, cancer treatment, treatment of other diseases, tissue repair, catalysis and applications in OLEDs and solar cells.


Sign in / Sign up

Export Citation Format

Share Document