Extinction, absorption, and scattering of light by plasmonic spheres embedded in an absorbing host medium

Author(s):  
Nikolai G. Khlebtsov

Although the general Lorenz-Mie formalism for spheres in an absorbing host has been developed, no correct analytical expressions in the small-particle limit have been published so far. Here, we derive...

Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


Author(s):  
G. Remond ◽  
R.H. Packwood ◽  
C. Gilles ◽  
S. Chryssoulis

Merits and limitations of layered and ion implanted specimens as possible reference materials to calibrate spatially resolved analytical techniques are discussed and illustrated for the case of gold analysis in minerals by means of x-ray spectrometry with the EPMA. To overcome the random heterogeneities of minerals, thin film deposition and ion implantation may offer an original approach to the manufacture of controlled concentration/ distribution reference materials for quantification of trace elements with the same matrix as the unknown.In order to evaluate the accuracy of data obtained by EPMA we have compared measured and calculated x-ray intensities for homogeneous and heterogeneous specimens. Au Lα and Au Mα x-ray intensities were recorded at various electron beam energies, and hence at various sampling depths, for gold coated and gold implanted specimens. X-ray intensity calculations are based on the use of analytical expressions for both the depth ionization Φ (ρz) and the depth concentration C (ρz) distributions respectively.


Author(s):  
D. Van Dyck

The computation of the many beam dynamical electron diffraction amplitudes or high resolution images can only be done numerically by using rather sophisticated computer programs so that the physical insight in the diffraction progress is often lost. Furthermore, it is not likely that in this way the inverse problem can be solved exactly, i.e. to reconstruct the structure of the object from the knowledge of the wavefunction at its exit face, as is needed for a direct method [1]. For this purpose, analytical expressions for the electron wavefunction in real or reciprocal space are much more useful. However, the analytical expressions available at present are relatively poor approximations of the dynamical scattering which are only valid either for thin objects ((weak) phase object approximation, thick phase object approximation, kinematical theory) or when the number of beams is very limited (2 or 3). Both requirements are usually invalid for HREM of crystals. There is a need for an analytical expression of the dynamical electron wavefunction which applies for many beam diffraction in thicker crystals. It is well known that, when a crystal is viewed along a zone axis, i.e. parallel to the atom columns, the high resolution images often show a one-to-one correspondence with the configuration of columns provided the distance between the columns is large enough and the resolution of the instrument is sufficient. This is for instance the case in ordered alloys with a column structure [2,3]. From this, it can be suggested that, for a crystal viewed along a zone axis with sufficient separation between the columns, the wave function at the exit face does mainly depend on the projected structure, i.e. on the type of atom columns. Hence, the classical picture of electrons traversing the crystal as plane-like waves in the directions of the Bragg beams which historically stems from the X-ray diffraction picture, is in fact misleading.


1966 ◽  
Vol 89 (5) ◽  
pp. 49-88 ◽  
Author(s):  
V.A. Zubov ◽  
M.M. Sushchinskii ◽  
I.K. Shuvalov

1971 ◽  
Vol 105 (12) ◽  
pp. 765-766
Author(s):  
Vladimir M. Agranovich ◽  
Vitalii L. Ginzburg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document