scholarly journals Correction: Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states

Author(s):  
Josep M. Ribó ◽  
David Hochberg

Correction for ‘Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states’ by Josep M. Ribó et al., Phys. Chem. Chem. Phys., 2020, 22, 14013–14025, DOI: 10.1039/D0CP02280B.

2020 ◽  
Vol 22 (25) ◽  
pp. 14013-14025 ◽  
Author(s):  
Josep M. Ribó ◽  
David Hochberg

Stability of non-equilibrium stationary states and spontaneous mirror symmetry breaking, provoked by the destabilization of the racemic thermodynamic branch, is studied for enantioselective autocatalysis in an open flow system, and for a continuous range n of autocatalytic orders.


Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
David Hochberg ◽  
Josep Ribó

Replicators are fundamental to the origin of life and evolvability. Biology exhibits homochirality: only one of two enantiomers is used in proteins and nucleic acids. Thermodynamic studies of chemical replicators able to lead to homochirality shed valuable light on the origin of homochirality and life in conformity with the underlying mechanisms and constraints. In line with this framework, enantioselective hypercyclic replicators may lead to spontaneous mirror symmetry breaking (SMSB) without the need for additional heterochiral inhibition reactions, which can be an obstacle for the emergence of evolutionary selection properties. We analyze the entropy production of a two-replicator system subject to homochiral cross-catalysis which can undergo SMSB in an open-flow reactor. The entropy exchange with the environment is provided by the input and output matter flows, and is essential for balancing the entropy production at the non-equilibrium stationary states. The partial entropy contributions, associated with the individual elementary flux modes, as defined by stoichiometric network analysis (SNA), describe how the system’s internal currents evolve, maintaining the balance between entropy production and exchange, while minimizing the entropy production after the symmetry breaking transition. We validate the General Evolution Criterion, stating that the change in the chemical affinities proceeds in a way as to lower the value of the entropy production.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 814 ◽  
Author(s):  
Josep M. Ribó ◽  
David Hochberg

Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.


2020 ◽  
Vol 22 (46) ◽  
pp. 27214-27223 ◽  
Author(s):  
David Hochberg ◽  
Antonio Sánchez Torralba ◽  
Federico Morán

The entropy production per unit volume in the chaotic regime of a chiral hypercycle in an open-flow reactor.


2018 ◽  
Author(s):  
Tim Gould

The GMTKN55 benchmarking protocol introduced by [Goerigk et al., Phys. Chem. Chem. Phys., 2017, 19, 32184] allows comprehensive analysis and ranking of density functional approximations with diverse chemical behaviours. But this comprehensiveness comes at a cost: GMTKN55's 1500 benchmarking values require energies for around 2500 systems to be calculated, making it a costly exercise. This manuscript introduces three subsets of GMTKN55, consisting of 30, 100 and 150 systems, as `diet' substitutes for the full database. The subsets are chosen via a stochastic genetic approach, and consequently can reproduce key results of the full GMTKN55 database, including ranking of approximations.


Author(s):  
Manoj Prasad ◽  
Filip Strubbe ◽  
Filip Beunis ◽  
Kristiaan Neyts

Correction for ‘Space charge limited release of charged inverse micelles in non-polar liquids’ by Manoj Prasad et al., Phys. Chem. Chem. Phys., 2016, 18, 19289–19298, DOI: 10.1039/C6CP03544B.


Author(s):  
Shyamal Mondal ◽  
Debasree Chowdhury ◽  
Pabitra Das ◽  
Biswarup Satpati ◽  
Debabrata Ghose ◽  
...  

Correction for ‘Observation of ordered arrays of endotaxially grown nanostructures from size-selected Cu-nanoclusters deposited on patterned substrates of Si’ by Shyamal Mondal et al., Phys. Chem. Chem. Phys., 2021, 23, 6009–6016 DOI: 10.1039/D0CP06089E.


2021 ◽  
Author(s):  
Ohjin Kwon ◽  
Xiaoqian Cai ◽  
Azhar Saeed ◽  
Feng Liu ◽  
Silvio Poppe ◽  
...  

Achiral multi-chain (polycatenar) compounds based on the 2,7-diphenyl substituted [1]benzothieno[3,2-b]benzothiophene (BTBT) unit and a 2,6-dibromo-3,4,5-trialkoxybenzoate end group lead to materials forming bicontinuous cubic liquid crystaline phases with helical network structures...


Author(s):  
Aditya G. Rao ◽  
Christian Wiebeler ◽  
Saumik Sen ◽  
David S. Cerutti ◽  
Igor Schapiro

Correction for ‘Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2’ by Aditya G. Rao et al., Phys. Chem. Chem. Phys., 2021, DOI: 10.1039/d0cp05314g.


2021 ◽  
Vol 23 (7) ◽  
pp. 4454-4454
Author(s):  
Kunran Yang ◽  
Jeremie Zaffran ◽  
Bo Yang

Correction for ‘Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor’ by Kunran Yang et al., Phys. Chem. Chem. Phys., 2020, 22, 890–895, DOI: 10.1039/C9CP04885E.


Sign in / Sign up

Export Citation Format

Share Document