Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states

2020 ◽  
Vol 22 (25) ◽  
pp. 14013-14025 ◽  
Author(s):  
Josep M. Ribó ◽  
David Hochberg

Stability of non-equilibrium stationary states and spontaneous mirror symmetry breaking, provoked by the destabilization of the racemic thermodynamic branch, is studied for enantioselective autocatalysis in an open flow system, and for a continuous range n of autocatalytic orders.

Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 814 ◽  
Author(s):  
Josep M. Ribó ◽  
David Hochberg

Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.


Author(s):  
Josep M. Ribó ◽  
David Hochberg

Correction for ‘Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states’ by Josep M. Ribó et al., Phys. Chem. Chem. Phys., 2020, 22, 14013–14025, DOI: 10.1039/D0CP02280B.


2020 ◽  
Vol 22 (46) ◽  
pp. 27214-27223 ◽  
Author(s):  
David Hochberg ◽  
Antonio Sánchez Torralba ◽  
Federico Morán

The entropy production per unit volume in the chaotic regime of a chiral hypercycle in an open-flow reactor.


Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
David Hochberg ◽  
Josep Ribó

Replicators are fundamental to the origin of life and evolvability. Biology exhibits homochirality: only one of two enantiomers is used in proteins and nucleic acids. Thermodynamic studies of chemical replicators able to lead to homochirality shed valuable light on the origin of homochirality and life in conformity with the underlying mechanisms and constraints. In line with this framework, enantioselective hypercyclic replicators may lead to spontaneous mirror symmetry breaking (SMSB) without the need for additional heterochiral inhibition reactions, which can be an obstacle for the emergence of evolutionary selection properties. We analyze the entropy production of a two-replicator system subject to homochiral cross-catalysis which can undergo SMSB in an open-flow reactor. The entropy exchange with the environment is provided by the input and output matter flows, and is essential for balancing the entropy production at the non-equilibrium stationary states. The partial entropy contributions, associated with the individual elementary flux modes, as defined by stoichiometric network analysis (SNA), describe how the system’s internal currents evolve, maintaining the balance between entropy production and exchange, while minimizing the entropy production after the symmetry breaking transition. We validate the General Evolution Criterion, stating that the change in the chemical affinities proceeds in a way as to lower the value of the entropy production.


2021 ◽  
Author(s):  
Ohjin Kwon ◽  
Xiaoqian Cai ◽  
Azhar Saeed ◽  
Feng Liu ◽  
Silvio Poppe ◽  
...  

Achiral multi-chain (polycatenar) compounds based on the 2,7-diphenyl substituted [1]benzothieno[3,2-b]benzothiophene (BTBT) unit and a 2,6-dibromo-3,4,5-trialkoxybenzoate end group lead to materials forming bicontinuous cubic liquid crystaline phases with helical network structures...


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4052
Author(s):  
Jie Wang ◽  
Hongfang Gu

When water vapor in moist air reaches supersaturation in a transonic flow system, non-equilibrium condensation forms a large number of droplets which may adversely affect the operation of some thermal-hydraulic equipment. For a better understanding of this non-equilibrium condensing phenomenon, a numerical model is applied to analyze moist air condensation in a transonic flow system by using the theory of nucleation and droplet growth. The Benson model is adopted to correct the liquid-plane surface tension equation for realistic results. The results show that the distributions of pressure, temperature and Mach number in moist air are significantly different from those in dry air. The dry air model exaggerates the Mach number by 19% and reduces both the pressure and the temperature by 34% at the nozzle exit as compared with the moist air model. At a Laval nozzle, for example, the nucleation rate, droplet number and condensation rate increase significantly with increasing relative humidity. The results also reveal the fact that the number of condensate droplets increases rapidly when moist air reaches 60% relative humidity. These findings provide a fundamental approach to account for the effect of condensate droplet formation on moist gas in a transonic flow system.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1095
Author(s):  
Andrew J. E. Seely

Understanding how nature drives entropy production offers novel insights regarding patient care. Whilst energy is always preserved and energy gradients irreversibly dissipate (thus producing entropy), increasing evidence suggests that they do so in the most optimal means possible. For living complex non-equilibrium systems to create a healthy internal emergent order, they must continuously produce entropy over time. The Maximum Entropy Production Principle (MEPP) highlights nature’s drive for non-equilibrium systems to augment their entropy production if possible. This physical drive is hypothesized to be responsible for the spontaneous formation of fractal structures in space (e.g., multi-scale self-similar tree-like vascular structures that optimize delivery to and clearance from an organ system) and time (e.g., complex heart and respiratory rate variability); both are ubiquitous and essential for physiology and health. Second, human entropy production, measured by heat production divided by temperature, is hypothesized to relate to both metabolism and consciousness, dissipating oxidative energy gradients and reducing information into meaning and memory, respectively. Third, both MEPP and natural selection are hypothesized to drive enhanced functioning and adaptability, selecting states with robust basilar entropy production, as well as the capacity to enhance entropy production in response to exercise, heat stress, and illness. Finally, a targeted focus on optimizing our patients’ entropy production has the potential to improve health and clinical outcomes. With the implications of developing a novel understanding of health, illness, and treatment strategies, further exploration of this uncharted ground will offer value.


Sign in / Sign up

Export Citation Format

Share Document