Star-Polymer Multidentate-Cross-Linking Strategy for Superior Operational Stability of Inverted Perovskite Solar Cells at High Efficiency

Author(s):  
Qi Cao ◽  
Jiabao Yang ◽  
Tong Wang ◽  
Yuke Li ◽  
Xingyu Pu ◽  
...  

Metal halide perovskites have attracted rapid development and great attention mainly due to its excellent optoelectronic properties. Currently, the efficiency of inverted (p-i-n) PSCs are around 23%, which catch up...

2015 ◽  
Vol 3 (30) ◽  
pp. 15372-15385 ◽  
Author(s):  
Yu-Che Hsiao ◽  
Ting Wu ◽  
Mingxing Li ◽  
Qing Liu ◽  
Wei Qin ◽  
...  

Polarization and spin-dependent excited states and charge transport.


2019 ◽  
Vol 4 (9) ◽  
pp. 2192-2200 ◽  
Author(s):  
Lin Xie ◽  
Jiangzhao Chen ◽  
Parth Vashishtha ◽  
Xing Zhao ◽  
Gwang Su Shin ◽  
...  

2019 ◽  
Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>


2020 ◽  
Vol 30 (34) ◽  
pp. 2000794 ◽  
Author(s):  
Weiyin Gao ◽  
Changshun Chen ◽  
Chenxin Ran ◽  
Hao Zheng ◽  
He Dong ◽  
...  

Author(s):  
Kyung-Geun Lim ◽  
Tae-Hee Han ◽  
Tae-Woo Lee

Organic-inorganic hybrid metal halide perovskites have excellent optoelectronic properties and are soft and resilient; therefore, they are appropriate for use in flexible and stretchable electronic devices. Commercialization of these perovskite...


Author(s):  
Ngoc Duy Pham ◽  
Amandeep Singh ◽  
Weijian Chen ◽  
Minh Tam Hoang ◽  
Yang Yang ◽  
...  

Simultaneously improving photovoltaic performance and longevity has become the main focus towards the commercialization of metal halide perovskite solar technology. Herein, we demonstrate resilient, high-efficiency triple-cation perovskite solar cells (PSCs)...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingshun Dong ◽  
Chao Zhu ◽  
Min Chen ◽  
Chen Jiang ◽  
Jingya Guo ◽  
...  

AbstractThe perovskite solar cell has emerged rapidly in the field of photovoltaics as it combines the merits of low cost, high efficiency, and excellent mechanical flexibility for versatile applications. However, there are significant concerns regarding its operational stability and mechanical robustness. Most of the previously reported approaches to address these concerns entail separate engineering of perovskite and charge-transporting layers. Herein we present a holistic design of perovskite and charge-transporting layers by synthesizing an interpenetrating perovskite/electron-transporting-layer interface. This interface is reaction-formed between a tin dioxide layer containing excess organic halide and a perovskite layer containing excess lead halide. Perovskite solar cells with such interfaces deliver efficiencies up to 22.2% and 20.1% for rigid and flexible versions, respectively. Long-term (1000 h) operational stability is demonstrated and the flexible devices show high endurance against mechanical-bending (2500 cycles) fatigue. Mechanistic insights into the relationship between the interpenetrating interface structure and performance enhancement are provided based on comprehensive, advanced, microscopic characterizations. This study highlights interface integrity as an important factor for designing efficient, operationally-stable, and mechanically-robust solar cells.


2019 ◽  
Author(s):  
Sofia Masi ◽  
Carlos Echeverría-Arrondo ◽  
Salim K.P. Muhammed ◽  
Thi Tuyen Ngo ◽  
Perla F. Méndez ◽  
...  

<b>The extraordinary low non-radiative recombination and band gap versatility of halide perovskites have led to considerable development in optoelectronic devices. However, this versatility is limited by the stability of the perovskite phase, related to the relative size of the different cations and anions. The most emblematic case is that of formamidinium lead iodine (FAPI) black phase, which has the lowest band gap among all 3D lead halide perovskites, but quickly transforms into the non-perovskite yellow phase at room temperature. Efforts to optimize perovskite solar cells have largely focused on the stabilization of FAPI based perovskite structures, often introducing alternative anions and cations. However, these approaches commonly result in a blue-shift of the band gap, which limits the maximum photo-conversion efficiency. Here, we report the use of PbS colloidal quantum dots (QDs) as stabilizing agent for the FAPI perovskite black phase. The surface chemistry of PbS plays a pivotal role, by developing strong bonds with the black phase but weak ones with the yellow phase. As a result, stable FAPI black phase can be formed at temperatures as low as 85°C in just 10 minutes, setting a record of concomitantly fast and low temperature formation for FAPI, with important consequences for industrialization. FAPI thin films obtained through this procedure preserve the original low band gap of 1.5 eV, reach a record open circuit potential (V<sub>oc</sub>) of 1.105 V -91% of the maximum theoretical V<sub>oc</sub>- and preserve high efficiency for more than 700 hours. These findings reveal the potential of strategies exploiting the chemi-structural properties of external additives to relax the tolerance factor and optimize the optoelectronic performance of perovskite materials.</b>


Science ◽  
2020 ◽  
Vol 368 (6488) ◽  
pp. eaay8691 ◽  
Author(s):  
Nicholas Rolston ◽  
Ross Bennett-Kennett ◽  
Laura T. Schelhas ◽  
Joseph M. Luther ◽  
Jeffrey A. Christians ◽  
...  

Tsai et al. (Reports, 6 April 2018, p. 67) report a uniform light-induced lattice expansion of metal halide perovskite films under 1-sun illumination and claim to exclude heat-induced lattice expansion. We show that by controlling the temperature of the perovskite film under both dark and illuminated conditions, the mechanism for lattice expansion is in fact fully consistent with heat-induced thermal expansion during illumination.


Sign in / Sign up

Export Citation Format

Share Document