An integrated high-throughput microfluidic circulatory fluorescence-activated cell sorting system (μ-CFACS) for the enrichment of rare cells

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kunpeng Cai ◽  
Shruti Mankar ◽  
Taiga Ajiri ◽  
Kentaro Shirai ◽  
Tasuku Yotoriyama

There is an increasing need for the enrichment of rare cells in the clinical environments of precision medicine, personalized medicine, and regenerative medicine. With the possibility of becoming the next-generation...

2021 ◽  
Vol 22 (6) ◽  
pp. 3041
Author(s):  
Gheorghita Menghiu ◽  
Vasile Ostafe ◽  
Radivoje Prodanović ◽  
Rainer Fischer ◽  
Raluca Ostafe

Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4507-4513 ◽  
Author(s):  
Xu-Dong Zhu ◽  
Xiang Shi ◽  
Shu-Wen Wang ◽  
Ju Chu ◽  
Wei-Hong Zhu ◽  
...  

A high-throughput screening system based on droplet microfluidic sorting was developed and employed for screening of high lactic acid-producing Bacillus coagulans.


The Analyst ◽  
2018 ◽  
Vol 143 (19) ◽  
pp. 4747-4755 ◽  
Author(s):  
Joanna C. Sadler ◽  
Andrew Currin ◽  
Douglas B. Kell

A novel ultra-high throughput screen forin vivodetection of oxidase activity inE. colicells and its application to directed evolution.


2014 ◽  
Vol 12 (7) ◽  
pp. 872-882 ◽  
Author(s):  
Bo Xie ◽  
Dan Stessman ◽  
Jason H. Hart ◽  
Haili Dong ◽  
Yingjun Wang ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40395-40405
Author(s):  
Kunpeng Cai ◽  
Shruti Mankar ◽  
Anastasia Maslova ◽  
Taiga Ajiri ◽  
Tasuku Yotoriyama

With the potential to avoid cross-contamination, eliminate bio-aerosols, and minimize device footprints, microfluidic fluorescence-activated cell sorting (μ-FACS) devices could become the platform for the next generation cell sorter.


Sign in / Sign up

Export Citation Format

Share Document