scholarly journals Amplified piezoelectrically actuated on-chip flow switching for a rapid and stable microfluidic fluorescence activated cell sorter

RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40395-40405
Author(s):  
Kunpeng Cai ◽  
Shruti Mankar ◽  
Anastasia Maslova ◽  
Taiga Ajiri ◽  
Tasuku Yotoriyama

With the potential to avoid cross-contamination, eliminate bio-aerosols, and minimize device footprints, microfluidic fluorescence-activated cell sorting (μ-FACS) devices could become the platform for the next generation cell sorter.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kunpeng Cai ◽  
Shruti Mankar ◽  
Taiga Ajiri ◽  
Kentaro Shirai ◽  
Tasuku Yotoriyama

There is an increasing need for the enrichment of rare cells in the clinical environments of precision medicine, personalized medicine, and regenerative medicine. With the possibility of becoming the next-generation...


2012 ◽  
Vol 1 (4) ◽  
pp. 365-365
Author(s):  
Jaehoon Chung ◽  
Huilin Shao ◽  
Thomas Reiner ◽  
David Issadore ◽  
Ralph Weissleder ◽  
...  

Lab on a Chip ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 2435-2443 ◽  
Author(s):  
K. Mutafopulos ◽  
P. Spink ◽  
C. D. Lofstrom ◽  
P. J. Lu ◽  
H. Lu ◽  
...  

We report a microfluidic fluorescence activated cell-sorting (μFACS) device that employs traveling surface acoustic waves (TSAW) to sort cells at rates comparable to conventional jet-in-air FACS machines, with high purity and viability.


Author(s):  
Anne Y. Fu ◽  
Yohei Yokobayashi

This chapter describes the development of elastomeric microfabricated cell sorters that allow for high sensitivity, no cross contamination, and lower cost than any conventional fluorescence-activated cell sorting. The course of this development depends heavily on two key technologies that have advanced rapidly within the past decade: microfluidics and soft lithography. Sorting in the microfabricated cell sorter is accomplished via different means of microfluidic control. This confers several advantages over the conventional sorting of aerosol droplets: novel algorithms of sorting or cell manipulation can be accomplished, dispensing of reagents and biochemical reactions can occur immediately before or after the sorting event, completely enclosed fluidic devices allow for studies of biohazardous/infectious cells or particles in a safer environment, and integration of other technologies can be implemented into the cell sorter. In addition, because of the easy fabrication process and inexpensive materials used in soft lithography, this elastomeric microfabricated cell sorter is affordable to every research laboratory and can be disposable just as a gel in gel electrophoresis, which eliminates any cross contamination from previous runs. Because of the advent of soft lithography, many inexpensive, flexible, and microfabricated devices could be designed to replace flow chambers in conventional flow cytometers. Soft lithography is a micromachining technique that uses the process of rapid prototyping and replica molding to fabricate inexpensive elastomeric microfluidic devices with materials such as plastics and polymers. The elastomeric properties of plastics and polymers allow for an easy fabrication process and for cleaning for reuse or disposal. A variety of biological assays can also be carried out as a result of the chemical compatibilities of different plastic materials with different solvents. More accurate sorting of cells can be accomplished because the sorting region is at or immediately after the interrogation point. On-chip chemical processing of cells has been accomplished and can be observed at any spot on the chip before or after sorting. Time-course measurements of a single cell for kinetic studies can be implemented using novel sorting schemes. Furthermore, linear arrays of channels on a single chip, the multiplex system, may be simultaneously detected by an array of photomultiplier tubes (PMT) for multiple analysis of different channels.


2009 ◽  
Vol 81 (13) ◽  
pp. 5188-5196 ◽  
Author(s):  
Linda Johansson ◽  
Fredrik Nikolajeff ◽  
Stefan Johansson ◽  
Sara Thorslund

2021 ◽  
Vol 22 (6) ◽  
pp. 3041
Author(s):  
Gheorghita Menghiu ◽  
Vasile Ostafe ◽  
Radivoje Prodanović ◽  
Rainer Fischer ◽  
Raluca Ostafe

Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.


2021 ◽  
Vol 20 ◽  
pp. 587-600
Author(s):  
Elisa Murenu ◽  
Marina Pavlou ◽  
Lisa Richter ◽  
Kleopatra Rapti ◽  
Sabrina Just ◽  
...  

Author(s):  
T. Ichiki ◽  
T. Ujiie ◽  
T. Hara ◽  
Y. Horiike ◽  
K. Yasuda

Sign in / Sign up

Export Citation Format

Share Document