scholarly journals Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn-air batteries

2021 ◽  
Author(s):  
Zhenyu Kong ◽  
Jingying Chen ◽  
Xiaoxia Wang ◽  
Xiaojing Long ◽  
Xilin She ◽  
...  

Rational design of multifunctional electrocatalysts can optimize the mutual conversion of water and oxygen. CoFe-LDH-based electrocatalyst with highly tunable electronic, component, and catalytic properties have attracted considerable attention. Herein, we...

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 838 ◽  
Author(s):  
Raluca Bianca Tomoiagă ◽  
Souad Diana Tork ◽  
Ilka Horváth ◽  
Alina Filip ◽  
Levente Csaba Nagy ◽  
...  

Phenylalanine ammonia-lyases (PALs) are attractive biocatalysts for the stereoselective synthesis of non-natural phenylalanines. The rational design of PALs with extended substrate scope, highlighted the substrate specificity-modulator role of residue I460 of Petroselinum crispum PAL. Herein, saturation mutagenesis at key residue I460 was performed in order to identify PcPAL variants of enhanced activity or to validate the superior catalytic properties of the rationally explored I460V PcPAL compared with the other possible mutant variants. After optimizations, the saturation mutagenesis employing the NNK-degeneracy generated a high-quality transformant library. For high-throughput enzyme-activity screens of the mutant library, a PAL-activity assay was developed, allowing the identification of hits showing activity in the reaction of non-natural substrate, p-MeO-phenylalanine. Among the hits, besides the known I460V PcPAL, several mutants were identified, and their increased catalytic efficiency was confirmed by biotransformations using whole-cells or purified PAL-biocatalysts. Variants I460T and I460S were superior to I460V-PcPAL in terms of catalytic efficiency within the reaction of p-MeO-Phe. Moreover, I460T PcPAL maintained the high specificity constant of the wild-type enzyme for the natural substrate, l-Phe. Molecular docking supported the favorable substrate orientation of p-MeO-cinnamic acid within the active site of I460T variant, similarly as shown earlier for I460V PcPAL (PDB ID: 6RGS).


2020 ◽  
Vol 44 (5) ◽  
pp. 1703-1706 ◽  
Author(s):  
Xiaoshuang Zhang ◽  
Xiaoqiang Du

Experimental and DFT calculation results show that the presence of oxygen vacancies can decrease the adsorption energy of intermediates at active sites and facilitate the adsorption of intermediates, thus improving the catalytic properties.


2021 ◽  
Vol 42 (6) ◽  
pp. 1040-1050
Author(s):  
Yi-Lei Li ◽  
Xiao-Jing Wang ◽  
Ying-Juan Hao ◽  
Jun Zhao ◽  
Ying Liu ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. 1799-1807 ◽  
Author(s):  
Nan Zang ◽  
Zexing Wu ◽  
Jie Wang ◽  
Wei Jin

CuCo2S4 ternary sheet arrays are successfully synthesized on the micro-fibre of carbon felt, which exhibits excellent OER, HER and overall water splitting performance benefiting from the unique structure.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Yanxue Zhang ◽  
Yunzhen Wu ◽  
Junfeng Gao ◽  
Bo Zhang ◽  
...  

Abstract Rational design of the catalysts is impressive for sustainable energy conversion. However, there is a grand challenge to engineer active sites at the interface. Herein, hierarchical transition bimetal oxides/sulfides heterostructure arrays interacting two-dimensional MoOx/MoS2 nanosheets attached to one-dimensional NiOx/Ni3S2 nanorods were fabricated by oxidation/hydrogenation-induced surface reconfiguration strategy. The NiMoOx/NiMoS heterostructure array exhibits the overpotentials of 38 mV for hydrogen evolution and 186 mV for oxygen evolution at 10 mA cm−2, even surviving at a large current density of 500 mA cm−2 with long-term stability. Due to optimized adsorption energies and accelerated water splitting kinetics by theory calculations, the assembled two-electrode cell delivers the industrially relevant current densities of 500 and 1000 mA cm−2 at record low cell voltages of 1.60 and 1.66 V with excellent durability. This research provides a promising avenue to enhance the electrocatalytic performance of the catalysts by engineering interfacial active sites toward large-scale water splitting.


Sign in / Sign up

Export Citation Format

Share Document