scholarly journals Stable dinitrile end-capped closed-shell non-quinodimethane as donor, acceptor and additive of organic solar cells

2022 ◽  
Author(s):  
Yuan Li ◽  
Zhicai He ◽  
Weixuan Liang ◽  
Peng Liu ◽  
Yiheng Zhang ◽  
...  

Non-fullerene acceptors exhibit great potential to improve photovoltaic performances of organic solar cells. However, it is important to further enhance chemical stability and device durability for future commercialization, especially for...

2021 ◽  
Author(s):  
Liang weixuan ◽  
Liu Peng ◽  
Zhang Yiheng ◽  
Zhu weiya ◽  
Tao Xinyang ◽  
...  

Non-fullerene acceptors exhibit great potential to improve photovoltaic performances of organic solar cells. However, it is important to further enhance chemical stability and device durability for future commercialization, especially for Y6-series small molecule acceptors with 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) type as ending group. In this work, an IC-free photovoltaic material YF-CN consisting of 2-fluoren-9-ylidenepropanedinitrile terminal was designed and synthesized by stille coupling. YF-CN exhibited closed-shell chemical structure with enhanced photostability and improved morphological compatibility with the binary PCE10:Y6 blend. The moderate energy level makes YF-CN could serve as a multifunctional material, such as donor, acceptor and the third component. When adding YF-CN as second donor into PCE10:Y6 system, an improved power conversion efficiency of 12.03% was achieved for as-cast device. Importantly, the ternary PCE10:YF-CN:Y6-devices showed enhanced storage durability maintaining 91% of initial PCE after the 360 hours. This work provides new perspective to understand the open-shell character of donor and closed-shell structure of acceptors, respectively, as well as promising design concept of stable IC-free acceptors for organic solar cells.


2021 ◽  
Author(s):  
Liang weixuan ◽  
Liu Peng ◽  
Zhang Yiheng ◽  
Zhu weiya ◽  
Tao Xinyang ◽  
...  

Non-fullerene acceptors exhibit great potential to improve photovoltaic performances of organic solar cells. However, it is important to further enhance chemical stability and device durability for future commercialization, especially for Y6-series small molecule acceptors with 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) type as ending group. In this work, an IC-free photovoltaic material YF-CN consisting of 2-fluoren-9-ylidenepropanedinitrile terminal was designed and synthesized by stille coupling. YF-CN exhibits enhanced photostability and improves morphological compatibility with the binary PCE10:Y6 blend. The moderate energy level makes YF-CN could serve as a multifunctional material, such as donor, acceptor and the third component. When adding YF-CN as second donor into PCE10:Y6 system, an improved power conversion efficiency of 12.03% was achieved for as-cast device. Importantly, the ternary PCE10:YF-CN:Y6-devices showed enhanced storage durability maintaining 91% of initial PCE after the 360 hours. This work provides new perspective to understand the open-shell and closed-shell structure of donors and acceptors, as well as promising design concept of stable IC-free acceptors for organic solar cells.


2021 ◽  
Vol 1198 ◽  
pp. 113176
Author(s):  
Sadaf Bibi ◽  
Rasheed Ahmad Khera ◽  
Afifa Farhat ◽  
Javed Iqbal

2015 ◽  
Vol 12 (5) ◽  
pp. 413-420
Author(s):  
Muhammad Ahsan Naveed ◽  
A. Hussain ◽  
K. Islam ◽  
P. Akhter

Organic solar cells have potential as an alternative to conventional inorganic solar cell due to low processing cost, flexibility and easy fabrication technique. The goal of this paper is to study the characteristics of the CuPc and PCBM based organic solar cell by introducing a thin layer of Ag at the interface of donor (CuPc) and Acceptor (PCBM), their photovoltaic and optical properties were investigated. The heterojunction solar cells with and without silver inter layer were fabricated through thermal deposition in HR vacuum. The OPV solar cells were characterized using current-voltage graphs, absorbance spectrum and Impedance spectroscopy. Impedance spectroscopy was taken to identify the traps using series resistance, parallel resistance, and Impedance spectrums under different frequencies. Optical behaviors of these devices have been investigated with absorbance spectrum. Introducing Ag to interfacing point produced traps and these traps causes to decreased Voc, Isc, FF, and efficiency. The effect of silver layer at donor acceptor interface was studied.


Author(s):  
Shahidul Alam ◽  
Vojtech Nádaždy ◽  
Tomáš Váry ◽  
Christian Friebe ◽  
Rico Meitzner ◽  
...  

Energy level alignments at the organic donor–acceptor interface cannot be predicted from cyclic voltammetry. Onsets for joint density of states and charge generation, reveal cases of energy uphill and – newly observed – downhill charge generation.


2014 ◽  
Vol 104 (16) ◽  
pp. 163303 ◽  
Author(s):  
Ji-Hoon Kim ◽  
Jong-Am Hong ◽  
Dae-Gyeon Kwon ◽  
Jaewon Seo ◽  
Yongsup Park

2021 ◽  
Author(s):  
Zhongxin Chen ◽  
Yuan Li ◽  
Wenqiang Li ◽  
Weiya Zhu ◽  
Miao Zeng ◽  
...  

The active materials of organic solar cells are widely recognized to show closed-shell singlet ground state and their electron spin resonance signals are attributed to the defects and impurities. Herein, we disclose the inherent open-shell singlet ground state of donors and the closed-shell structure of acceptors via the combination of variable temperature NMR, electron spin resonance, superconducting quantum interference device and theoretical calculation, providing a new perspective to understand the intrinsic molecular structure in organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document