silver layer
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 56)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
pp. 163574
Author(s):  
Zhenxue Zhang ◽  
Yuejiao Zhang ◽  
Xiao Tao ◽  
Ke Liu ◽  
Andrew Burns ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Ren Long Zhou ◽  
Sa Yang ◽  
Qiawu Lin ◽  
Liangpo Tang ◽  
Yong Li ◽  
...  

Abstract A newly reported 2D material “borophene” provides a novel building block for nanoscale materials and devices. In this work, the linear and nonlinear plasmonic response of electric dipole moment in the metallic borophene is theoretically investigated. In our proposed model, the borophene nanostructure is deposited on the top of the dielectric layer sandwiched with the silver layer acting as a mirror. It was found that the scattering at the scattering peak originates mainly from the exciting total electric dipole. Our calculations demonstrated that scattering in the proposed model can be tuned well with carrier relaxation time, effective electron mass, and free carrier density. The strongly localized fundamental field induces the desired increase of second harmonic wave, which is discussed in detail by introducing the second-order nonlinear source. In addition, the evolution of the lifetime of linear and nonlinear plasmonic modes is also investigated which helps us to study the underlying mechanism of micro process in the borophene plasmonic-photonic interaction. The manipulation of plasmonic behavior and lifetime evolution makes the borophene an excellent platform for tunable plasmonic-photonic devices.


2021 ◽  
Vol 24 (04) ◽  
pp. 436-443
Author(s):  
I.Z. Indutnyi ◽  
◽  
V.I. Mynko ◽  
M.V. Sopinskyy ◽  
V.A. Dan’ko ◽  
...  

The effect of surface plasmon-polaritons (SPPs) excited at the interface between the profiled surface of the silver layer (in the form of a diffraction grating) and the As4Ge30S66 layer on the photostimulated diffusion of silver into chalcogenide has been studied. The gratings with the period a = 519 nm and modulation depth h/a ≈ 0.037 (where h is the grating depth) were formed on chalcogenide photoresist films by using interferential lithography and covered with the 80-nm-thick aluminum layer, 85-nm-thick silver layer, and thin As4Ge30S66 layer. Photostimulated changes in this structure were studied measuring the angular dependences of specular reflection (Rp) of p-polarized light with the wavelength 632.8 nm. It was found that as a result of exposure, “degradation” (broadening, increase in reflection at the minimum) of the minimum in the angular dependence of Rp (which is associated with the SPP resonance) occurs faster, when the samples are irradiated at the angle corresponding to SPP excitation. This observation indicates acceleration of the photostimulated diffusion process in this structure under the plasmon field action.


Author(s):  
Fei Qin ◽  
Shuai Zhao ◽  
Yanwei Dai ◽  
Lingyun Liu ◽  
Tong An ◽  
...  

Abstract Thermo-mechanical reliability assessment for sintered silver is a crucial issue as sintered silver is a promising candidate of die-attachment materials for power devices. In this paper, the nano-indentation tests are performed for sintered silver in typical die-attach interconnection under different thermal cycles. Based on thermal cycling test, the Young's modulus and hardness of sintered silver layer have been presented. It is found that the Young's modulus and hardness of sintered silver layer changes slightly although the microstructure of sintered silver also presents some variations. The stress and strain curves for different thermal cycling tests for sintered silver based on reverse analysis of nano-indentation are also given. The results show that the elastoplastic constitutive equations change significantly after thermal cycling tests, and the yielding stress decreases remarkably after 70 thermal cycles. The experimental investigation also show that the cracking behaviors of sintered silver depends on its geometry characteristics, which implies that the possible optimization of sintered silver layer could enhance its thermo-mechanical performance.


2021 ◽  
Vol 8 (11) ◽  
pp. 115404
Author(s):  
Gebhard Sabathi ◽  
Andreas Reyer ◽  
Nicola Cefarin ◽  
Thomas Sepperer ◽  
Jonas Eckardt ◽  
...  

Abstract Simple substrates for surface enhanced Raman spectroscopy (SERS), producible in a cost-efficient way, are of growing interest both for scientific and for environmental applications. In this study, we demonstrate the use of three types of bio-based tannin-furanic rigid foams as precursor materials for SERS substrates. Coated with a silver layer, these substrates allowed the detection of several well-known analytes in the mM regime by Raman spectroscopy. Specific optimization of the standard tannin-furanic foam morphology by tuning the chemical synthesis led to a smaller and more homogeneously distributed pore structure, supplying more active hot spot areas. Thus, we obtained a significant increase and a lower relative standard deviation (RSD) of the SERS signal recorded over the mapped SERS substrate area, for several analytes, in particular for Malachite Green dye. This work represents a feasibility study opening several potential applications of this biopolymers in fields such as the detection of water pollutants, virtually combining filtration and SERS capabilities driven by a controlled porosity.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7056
Author(s):  
Tan Tai Nguyen ◽  
Nguyen Van Sau ◽  
Quang Minh Ngo ◽  
Gauthier Eppe ◽  
Ngoc Quyen Tran ◽  
...  

In this work, the multilayer of the surface plasmon resonance (SPR) sensor was optimized to achieve the maximum sensor sensitivity. By optimizing the thickness of the silver layer (Ag) and dielectric films (TiO2 and AlAs), the optimum sensitivity of the SPR sensor could be obtained. The performance of the SPR sensor proposed was compared with control simulations utilizing zinc oxide (ZnO) and molybdenum oxide (MoO3). The numerical results indicate that the figure-of-merits (FOM) of the SPR sensor was achieved around 150/RIU, corresponding to the sensor sensitivity of 162.79°/RIU with the optimized thicknesses of the TiO2, Ag, and AlAs layers of 140 nm, 60 nm, and 25 nm, respectively. This refractive index sensor shows the FOM to have high detection accuracy and high sensitivity that lead to finding potential application in bio-chemical detection with a small volume of liquid used in biological diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kirsty E. McGhee ◽  
Anton Putintsev ◽  
Rahul Jayaprakash ◽  
Kyriacos Georgiou ◽  
Mary E. O’Kane ◽  
...  

AbstractWe have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO2 and a Nb2O5 film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror—caused by limited adhesion between the silver and the dielectric pair—apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1287
Author(s):  
Pu Liu ◽  
Yongxin Song ◽  
Zhitao Zhang

Discharge mode is an important parameter for ozone synthesis by dielectric barrier discharge (DBD). Currently, it is still challenging to stably generate glow discharge with oxygen at atmospheric pressure. In this paper, a DBD reactor with a layer of silver placed between the electrode and the dielectric layer (SL-DBD) was developed. Experimental results show that both streamer and glow corona discharge were stably generated under sinusoidal excitation with a 0.5 mm discharge gap in a parallel-plate DBD, due to the increased electric field strength in the discharge gap by the silver layer. It was also found that, in the SL-DBD reactor, glow corona discharge enhances the discharge strength by 50 times. The spectral peak of O at 777 nm in SL-DBD is increased to 28,800, compared with 18,389 in a reactor with a streamer only. The SL-DBD reactor produces ozone with a concentration of as high as 150 g/m3 and shows good stability in an 8 h durability test.


Sign in / Sign up

Export Citation Format

Share Document