scholarly journals Chemical conjugation of nucleic acid aptamers and synthetic polymers

2021 ◽  
Author(s):  
Maria Nerantzaki ◽  
Capucine Loth ◽  
Jean-Francois Lutz

Nucleic acid aptamers are chemically-synthesized single-stranded oligonucleotides that fold into specific sequence-dependent configurations. Due to their exceptional recognition properties towards a variety of biological targets, they find applications in many...

2013 ◽  
Vol 10 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Rudi K. Tannenberg ◽  
Hadi Al. Shamaileh ◽  
Lasse H. Lauridsen ◽  
Jagat R. Kanwar ◽  
Peter R. Dodd ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Hiro Uemachi ◽  
Yuuya Kasahara ◽  
Keisuke Tanaka ◽  
Takumi Okuda ◽  
Yoshihiro Yoneda ◽  
...  

Nucleic acid aptamers have attracted considerable attention as next-generation pharmaceutical agents and delivery vehicles for small molecule drugs and therapeutic oligonucleotides. Chemical modification is an effective approach for improving the functionality of aptamers. However, the process of selecting appropriately modified aptamers is laborious because of many possible modification patterns. Here, we describe a hybrid-type systematic evolution of ligands by exponential enrichment (SELEX) approach for the generation of the artificial nucleic acid aptamers effective against human TROP2, a cell surface protein identified by drug discovery as a promising target for cancer therapy. Capillary electrophoresis SELEX was used for the pre-screening of multiple modified nucleic acid libraries and enrichment of TROP2 binding aptamers in the first step, followed by functional screening using cell-SELEX in the second step for the generation of cell-internalizing aptamers. One representative aptamer, Tac-B1, had a nanomolar-level affinity to human TROP2 and exhibited elevated capacity for internalization by cells. Because of the growing interest in the application of aptamers for drug delivery, our hybrid selection approach has great potential for the generation of functional artificial nucleic acid aptamers with ideal modification patterns in vitro.


Interest in nucleic acid hybridization stems mainly from its great power as a tool in biological research. It is used in several quite distinct ways. Because of the high degree of specificity that they show, hybridization techniques can be used to measure the amount of one specific sequence within a very heterogeneous mixture of sequences. Measurements of 1/10 6 -10 7 have been recorded. In extension of this, various properties of a specific sequence can often be studied. Secondly, because the kinetics of nucleic acid hybridization are quite well understood, it can be used to characterize both a pure sequence and a very complex mixture of sequences, like the genome of a vertebrate. Thirdly, again because of its specificity, it can be used to measure homologies between different populations of nucleic acids. Lastly, in conjunction with other techniques, it can be used as a basis for the fractionation of nucleic acid populations and the purification of specific sequences. Specific examples of these applications are given, with special reference to the organization of the genome in higher eukaryotes.


2011 ◽  
Vol 9 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Mahmoud Soliman ◽  
Rujikan Nasanit ◽  
Samer R. Abulateefeh ◽  
Stephanie Allen ◽  
Martyn C. Davies ◽  
...  

2011 ◽  
Vol 18 (27) ◽  
pp. 4195-4205 ◽  
Author(s):  
H. Hong ◽  
S. Goel ◽  
Y. Zhang ◽  
W. Cai

Sign in / Sign up

Export Citation Format

Share Document