Piezoelectric Enhancement of Electrospun AlN-doped P(VDF-TrFE) Nanofiber Membrane

Author(s):  
JIANG YANG ◽  
F Xu ◽  
Hanxiao Jiang ◽  
Conghuan Wang ◽  
Xingjia Li ◽  
...  

Piezoelectric materials are well known for their applications in self-powered sensing and mechanical energy harvesting. With the development of Internet of Things and wearable electronics, piezoelectric polymers are attracting more...

2019 ◽  
Vol 14 (11) ◽  
pp. 1572-1581 ◽  
Author(s):  
Shamsuddin ◽  
Saeed Ahmed Khan ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Palwasha Jalalzai

A self-powered mechanical energy harvesting system consists of the storage system and the energy scavenging TENG. Triboelectric nanogenerator includes a system which integrates a self-powered sensor and the power generator, this triboelectric nanogenerator has the potential to be used in a modern wearable electronic TENG. It has been reported that triboelectric nanogenerator working under complicated deformation like bending, stretching and twisting brings the main problem. Here we have fabricated the shape adaptive Triboelectric nanogenerator which solves all the deformation issues and can harvest the mechanical energy through human body motion in any deformation, the fabricated TENG is a self-powered sensor which can sense the different human activities and can monitor the health issues, the TENG stores the energy directly to the capacitor for powering the wearable electronics. A human skin based triboelectric nanogenerator was designed from the silicon rubber and the copper acetate-II used as the electrode, which makes the TENG flexible self-powered sensor, it can be stretched up to 200%. The stretchable nature and the flexibility of the human skin based silicon rubber triboelectric nanogenerator makes it the promising flexible and shape-adaptive energy harvesting TENG. The fabricated TENG generated the open circuit voltage 70 V and the short circuit current 11 μA and delivered the power 55 μW at the load of 80 MΩ. 42 LEDs were powered directly from the TENG. The fabricated TENG has human skin tactile property which does not harm the human skin while using it multiple times. The layer of copper acetate is completely coated with silicone rubber. The fabricated TENG is flexible, biocompatible and cost effective.


2019 ◽  
pp. 152808371987019 ◽  
Author(s):  
Bilal Zaarour ◽  
Lei Zhu ◽  
Chen Huang ◽  
XiangYu Jin ◽  
Hadeel Alghafari ◽  
...  

Recent advances in self-powered electronic devices have urged the development of energy-harvesting technology. Batteries are gradually unable to satisfy the practical requirements for powering the different types of microelectronic devices owing to their drawbacks such as occupying a significant percentage and weight of portable products, the need to replace or recharge them, constructing an important environmental impact, and the probable seepage of electrolyte solutions. Various technologies for converting renewable energies into electricity have been reported. Particularly, energy harvesters based on piezoelectricity to convert mechanical energy into usable electricity have received considerable attention. Electrospun fibers from piezoelectric polymers and inorganic nanowires as emerging piezoelectric materials have shown great potential for energy-harvesting applications. This review paper summarizes energy-harvesting technology based on piezoelectric polymeric fibers, inorganic piezoelectric fibers, and inorganic nanowires. A comprehensive overview of fundamentals of piezoelectric effect, types of piezoelectric materials, energy harvesting from fibers, energy harvesting from inorganic nanowires, and energy harvesting from polymeric/inorganic fibers and nanowires composites are discussed.


2021 ◽  
Vol 30 (9) ◽  
pp. 11-15
Author(s):  
Yoon-Hwae HWANG

Energy harvesting is the process by which energy can be obtained from external sources and used for wearable electronics and wireless sensor networks. Piezoelectric nanogenerators are energy harvesting devices that convert mechanical energy into electric energy by using nanostructured materials. This article summarizes work to date on piezoelectric nanogenerators, starting with the basic theory of piezo- and flexo-electricity and moving through reports on nanogenerators using nanostructures, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power sources or strain sensors of highly integrated nanodevices. Further improvements in nanogenerators holds promise for the development of self-powered implantable and wearable electronics.


Author(s):  
Carmel Majidi ◽  
Mikko Haataja ◽  
David J. Srolovitz

The development of self-powered electronic devices is essential for emerging technologies such as wireless sensor networks, wearable electronics, and microrobotics. Of particular interest is the rapidly growing field of piezoelectric energy harvesting (PEH), in which mechanical strains are converted to electricity. Recently, PEH has been demonstrated by brushing an array of piezoelectric nanowires against a nanostructured surface. The piezoelectric nanobrush generator can be limited to sub-micron dimensions and thus allows for a vast reduction in the size of self-powered devices. Moreover, energy harvesting is controlled through contact between the nanowire tips and nanostructured surface, which broadens the design space to a wealth of innovations in tribology. Here we propose design criteria based on principles of contact mechanics, elastic rod theory, and continuum piezoelasticity.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6748
Author(s):  
Xinran Zhou ◽  
Kaushik Parida ◽  
Oded Halevi ◽  
Shlomo Magdassi ◽  
Pooi See Lee

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide–polymer composites.


Sign in / Sign up

Export Citation Format

Share Document