A review on piezoelectric fibers and nanowires for energy harvesting

2019 ◽  
pp. 152808371987019 ◽  
Author(s):  
Bilal Zaarour ◽  
Lei Zhu ◽  
Chen Huang ◽  
XiangYu Jin ◽  
Hadeel Alghafari ◽  
...  

Recent advances in self-powered electronic devices have urged the development of energy-harvesting technology. Batteries are gradually unable to satisfy the practical requirements for powering the different types of microelectronic devices owing to their drawbacks such as occupying a significant percentage and weight of portable products, the need to replace or recharge them, constructing an important environmental impact, and the probable seepage of electrolyte solutions. Various technologies for converting renewable energies into electricity have been reported. Particularly, energy harvesters based on piezoelectricity to convert mechanical energy into usable electricity have received considerable attention. Electrospun fibers from piezoelectric polymers and inorganic nanowires as emerging piezoelectric materials have shown great potential for energy-harvesting applications. This review paper summarizes energy-harvesting technology based on piezoelectric polymeric fibers, inorganic piezoelectric fibers, and inorganic nanowires. A comprehensive overview of fundamentals of piezoelectric effect, types of piezoelectric materials, energy harvesting from fibers, energy harvesting from inorganic nanowires, and energy harvesting from polymeric/inorganic fibers and nanowires composites are discussed.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hongjun Zhu ◽  
Tao Tang ◽  
Huohai Yang ◽  
Junlei Wang ◽  
Jinze Song ◽  
...  

Flow-induced vibration (FIV) is concerned in a broad range of engineering applications due to its resultant fatigue damage to structures. Nevertheless, such fluid-structure coupling process continuously extracts the kinetic energy from ambient fluid flow, presenting the conversion potential from the mechanical energy to electricity. As the air and water flows are widely encountered in nature, piezoelectric energy harvesters show the advantages in small-scale utilization and self-powered instruments. This paper briefly reviewed the way of energy collection by piezoelectric energy harvesters and the various measures proposed in the literature, which enhance the structural vibration response and hence improve the energy harvesting efficiency. Methods such as irregularity and alteration of cross-section of bluff body, utilization of wake flow and interference, modification and rearrangement of cantilever beams, and introduction of magnetic force are discussed. Finally, some open questions and suggestions are proposed for the future investigation of such renewable energy harvesting mode.


Author(s):  
JIANG YANG ◽  
F Xu ◽  
Hanxiao Jiang ◽  
Conghuan Wang ◽  
Xingjia Li ◽  
...  

Piezoelectric materials are well known for their applications in self-powered sensing and mechanical energy harvesting. With the development of Internet of Things and wearable electronics, piezoelectric polymers are attracting more...


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1850 ◽  
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Paolo Gaudenzi

From last few decades, piezoelectric materials have played a vital role as a mechanism of energy harvesting, as they have the tendency to absorb energy from the environment and transform it to electrical energy that can be used to drive electronic devices directly or indirectly. The power of electronic circuits has been cut down to nano or micro watts, which leads towards the development of self-designed piezoelectric transducers that can overcome power generation problems and can be self-powered. Moreover, piezoelectric energy harvesters (PEHs) can reduce the need for batteries, resulting in optimization of the weight of structures. These mechanisms are of great interest for many researchers, as piezoelectric transducers are capable of generating electric voltage in response to thermal, electrical, mechanical and electromagnetic input. In this review paper, Fluid Structure Interaction-based, human-based, and vibration-based energy harvesting mechanisms were studied. Moreover, qualitative and quantitative analysis of existing PEH mechanisms has been carried out.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2975
Author(s):  
Long Liu ◽  
Xinge Guo ◽  
Weixin Liu ◽  
Chengkuo Lee

With the fast development of energy harvesting technology, micro-nano or scale-up energy harvesters have been proposed to allow sensors or internet of things (IoT) applications with self-powered or self-sustained capabilities. Facilitation within smart homes, manipulators in industries and monitoring systems in natural settings are all moving toward intellectually adaptable and energy-saving advances by converting distributed energies across diverse situations. The updated developments of major applications powered by improved energy harvesters are highlighted in this review. To begin, we study the evolution of energy harvesting technologies from fundamentals to various materials. Secondly, self-powered sensors and self-sustained IoT applications are discussed regarding current strategies for energy harvesting and sensing. Third, subdivided classifications investigate typical and new applications for smart homes, gas sensing, human monitoring, robotics, transportation, blue energy, aircraft, and aerospace. Lastly, the prospects of smart cities in the 5G era are discussed and summarized, along with research and application directions that have emerged.


Author(s):  
Saman Farhangdoust ◽  
Gary Georgeson ◽  
Jeong-Beom Ihn ◽  
Armin Mehrabi

Abstract These days, piezoelectric energy harvesting (PEH) is introduced as one of the clean and renewable energy sources for powering the self-powered sensors utilized for wireless condition monitoring of structures. However, low efficiency is the biggest drawback of the PEHs. This paper introduces an innovative embedded metamaterial subframe (MetaSub) patch as a practical solution to address the low throughput limitation of conventional PEHs whose host structure has already been constructed or installed. To evaluate the performance of the embedded MetaSub patch (EMSP), a cantilever beam is considered as the host structure in this study. The EMSP transfers the auxetic behavior to the piezoelectric element (PZT) wherever substituting a regular beam with an auxetic beam is either impracticable or suboptimal. The concept of the EMSP is numerically validated, and the COMSOL Multiphysics software was employed to investigate its performance when a cantilever beam is subjected to different amplitude and frequency. The FEM results demonstrate that the harvesting power in cases that use the EMSP can be amplified up to 5.5 times compared to a piezoelectric cantilever energy harvester without patch. This paper opens up a great potential of using EMSP for different types of energy harvesting systems in biomedical, acoustics, civil, electrical, aerospace, and mechanical engineering applications.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6748
Author(s):  
Xinran Zhou ◽  
Kaushik Parida ◽  
Oded Halevi ◽  
Shlomo Magdassi ◽  
Pooi See Lee

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide–polymer composites.


Author(s):  
Zhengbao Yang ◽  
Jean Zu

Energy harvesting from vibrations has become, in recent years, a recurring target of a quantity of research to achieve self-powered operation of low-power electronic devices. However, most of energy harvesters developed to date, regardless of different transduction mechanisms and various structures, are designed to capture vibration energy from single predetermined direction. To overcome the problem of the unidirectional sensitivity, we proposed a novel multi-directional nonlinear energy harvester using piezoelectric materials. The harvester consists of a flexural center (one PZT plate sandwiched by two bow-shaped aluminum plates) and a pair of elastic rods. Base vibration is amplified and transferred to the flexural center by the elastic rods and then converted to electrical energy via the piezoelectric effect. A prototype was fabricated and experimentally compared with traditional cantilevered piezoelectric energy harvester. Following that, a nonlinear conditioning circuit (self-powered SSHI) was analyzed and adopted to improve the performance. Experimental results shows that the proposed energy harvester has the capability of generating power constantly when the excitation direction is changed in 360. It also exhibits a wide frequency bandwidth and a high power output which is further improved by the nonlinear circuit.


Author(s):  
Jingnan Zhao ◽  
Hao Wang

This study investigated the feasibility of applying piezoelectric energy harvesting technology in airfield pavements through mechanistic modeling and economic analysis. The energy harvesting performance of piezoelectric transducers was evaluated based on mechanical energy induced by multi-wheel aircraft loading on flexible airfield pavements. A three-dimensional finite element model was used to estimate the stress pulse and magnitude under moving aircraft tire loading. A stack piezoelectric transducer design was used to estimate the power output of a piezoelectric harvester embedded at different locations and depths in the pavement. The aircraft load and speed were found to be vital factors affecting the power output, along with the installation depth and horizontal locations of the energy harvester. On the other hand, the installation of the energy module had a negligible influence on the horizontal tensile strains at the bottom of the asphalt layer and compressive strains on the top of the subgrade. However, the near-surface pavement strains increased when the edge ribs of the tire were loaded on the energy module. Feasibility analysis results showed that the calculated levelized cost of electricity was high in general, although it varies depending on the airport traffic levels and the service life of the energy module. With the development of piezoelectric materials and technology, further evaluation of energy harvesting applications at airports needs to be conducted.


Sign in / Sign up

Export Citation Format

Share Document