scholarly journals All 3D Printed Stretchable Piezoelectric Nanogenerator for Self-Powered Sensor Application

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6748
Author(s):  
Xinran Zhou ◽  
Kaushik Parida ◽  
Oded Halevi ◽  
Shlomo Magdassi ◽  
Pooi See Lee

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide–polymer composites.

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 666
Author(s):  
Lanxin Yang ◽  
Zhihao Ma ◽  
Yun Tian ◽  
Bo Meng ◽  
Zhengchun Peng

With the rapid development of the internet of things (IoT), sustainable self-powered wireless sensory systems and diverse wearable and implantable electronic devices have surged recently. Under such an opportunity, nanogenerators, which can convert continuous mechanical energy into usable electricity, have been regarded as one of the critical technologies for self-powered systems, based on the high sensitivity, flexibility, and biocompatibility of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs). In this review, we have thoroughly analyzed the materials and structures of wearable and implantable PENGs and TENGs, aiming to make clear how to tailor a self-power system into specific applications. The advantages in TENG and PENG are taken to effectuate wearable and implantable human-oriented applications, such as self-charging power packages, physiological and kinematic monitoring, in vivo and in vitro healing, and electrical stimulation. This review comprehensively elucidates the recent advances and future outlook regarding the human body’s self-powered systems.


Nanoscale ◽  
2018 ◽  
Vol 10 (21) ◽  
pp. 10033-10040 ◽  
Author(s):  
Gang Ge ◽  
Yichen Cai ◽  
Qiuchun Dong ◽  
Yizhou Zhang ◽  
Jinjun Shao ◽  
...  

High-performance stretchable and wearable electronic skins (E-skins) with high sensitivity and a large sensing range are urgently required with the rapid development of the Internet of things and artificial intelligence.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1455
Author(s):  
Qiongfeng Shi ◽  
Huicong Liu

In recent years, we have witnessed the revolutionary innovation and flourishing advancement of the Internet of things (IoT), which will maintain a strong momentum even more with the gradual rollout of the fifth generation (5G) wireless network and the rapid development of personal healthcare electronics [...]


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 158
Author(s):  
Peng Huang ◽  
Dan-Liang Wen ◽  
Yu Qiu ◽  
Ming-Hong Yang ◽  
Cheng Tu ◽  
...  

In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems.


2020 ◽  
Vol 8 (27) ◽  
pp. 13619-13629 ◽  
Author(s):  
Asif Abdullah Khan ◽  
Md Masud Rana ◽  
Guangguang Huang ◽  
Nanqin Mei ◽  
Resul Saritas ◽  
...  

A high-performance perovskite/polymer piezoelectric nanogenerator for next generation self-powered wireless micro/nanodevices.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ke Wang ◽  
Zheming Yang ◽  
Bing Liang ◽  
Wen Ji

Purpose The rapid development of 5G technology brings the expansion of the internet of things (IoT). A large number of devices in the IoT work independently, leading to difficulties in management. This study aims to optimize the member structure of the IoT so the members in it can work more efficiently. Design/methodology/approach In this paper, the authors consider from the perspective of crowd science, combining genetic algorithms and crowd intelligence together to optimize the total intelligence of the IoT. Computing, caching and communication capacity are used as the basis of the intelligence according to the related work, and the device correlation and distance factors are used to measure the improvement level of the intelligence. Finally, they use genetic algorithm to select a collaborative state for the IoT devices. Findings Experimental results demonstrate that the intelligence optimization method in this paper can improve the IoT intelligence level up to ten times than original level. Originality/value This paper is the first study that solves the problem of device collaboration in the IoT scenario based on the scientific background of crowd intelligence. The intelligence optimization method works well in the IoT scenario, and it also has potential in other scenarios of crowd network.


Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14499-14505 ◽  
Author(s):  
Yanchao Mao ◽  
Nan Zhang ◽  
Yingjie Tang ◽  
Meng Wang ◽  
Mingju Chao ◽  
...  

A novel paper triboelectric nanogenerator (P-TENG) was successfully developed. The P-TENG can harvest mechanical energy from the action of turning book pages, and the generated electricity could directly light up 80 commercial white light-emitting diodes (LEDs).


2019 ◽  
Vol 5 (4) ◽  
pp. eaav6437 ◽  
Author(s):  
Di Liu ◽  
Xing Yin ◽  
Hengyu Guo ◽  
Linglin Zhou ◽  
Xinyuan Li ◽  
...  

In situ conversion of mechanical energy into electricity is a feasible solution to satisfy the increasing power demand of the Internet of Things (IoTs). A triboelectric nanogenerator (TENG) is considered as a potential solution via building self-powered systems. Based on the triboelectrification effect and electrostatic induction, a conventional TENG with pulsed AC output characteristics always needs rectification and energy storage units to obtain a constant DC output to drive electronic devices. Here, we report a next-generation TENG, which realizes constant current (crest factor, ~1) output by coupling the triboelectrification effect and electrostatic breakdown. Meanwhile, a triboelectric charge density of 430 mC m−2 is attained, which is much higher than that of a conventional TENG limited by electrostatic breakdown. The novel DC-TENG is demonstrated to power electronics directly. Our findings not only promote the miniaturization of self-powered systems used in IoTs but also provide a paradigm-shifting technique to harvest mechanical energy.


2019 ◽  
Vol 7 (12) ◽  
pp. 7109-7117 ◽  
Author(s):  
Shengjie Gao ◽  
Ruoxing Wang ◽  
Chenxiang Ma ◽  
Zihao Chen ◽  
Yixiu Wang ◽  
...  

Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies.


Sign in / Sign up

Export Citation Format

Share Document