scholarly journals Rare bioparticle detection via deep metric learning

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17603-17610
Author(s):  
Shaobo Luo ◽  
Yuzhi Shi ◽  
Lip Ket Chin ◽  
Yi Zhang ◽  
Bihan Wen ◽  
...  

Conventional deep neural networks use simple classifiers to obtain highly accurate results. However, they have limitations in practical applications. This study demonstrates a robust deep metric neural network model for rare bioparticle detection.

2021 ◽  
Vol 23 (37) ◽  
pp. 20835-20840
Author(s):  
Shuqian Ye ◽  
Jiechun Liang ◽  
Xi Zhu

Our Cat-DNNs scheme adopts physical correlations as “catalysts” for any multi-task deep neural network model to achieve higher physical accuracy. It can keep all output physically-reliable and precisely predict singlet fission properties.


2012 ◽  
Vol 16 (4) ◽  
pp. 1151-1169 ◽  
Author(s):  
A. El-Shafie ◽  
A. Noureldin ◽  
M. Taha ◽  
A. Hussain ◽  
M. Mukhlisin

Abstract. Rainfall is considered as one of the major components of the hydrological process; it takes significant part in evaluating drought and flooding events. Therefore, it is important to have an accurate model for rainfall forecasting. Recently, several data-driven modeling approaches have been investigated to perform such forecasting tasks as multi-layer perceptron neural networks (MLP-NN). In fact, the rainfall time series modeling involves an important temporal dimension. On the other hand, the classical MLP-NN is a static and has a memoryless network architecture that is effective for complex nonlinear static mapping. This research focuses on investigating the potential of introducing a neural network that could address the temporal relationships of the rainfall series. Two different static neural networks and one dynamic neural network, namely the multi-layer perceptron neural network (MLP-NN), radial basis function neural network (RBFNN) and input delay neural network (IDNN), respectively, have been examined in this study. Those models had been developed for the two time horizons for monthly and weekly rainfall forecasting at Klang River, Malaysia. Data collected over 12 yr (1997–2008) on a weekly basis and 22 yr (1987–2008) on a monthly basis were used to develop and examine the performance of the proposed models. Comprehensive comparison analyses were carried out to evaluate the performance of the proposed static and dynamic neural networks. Results showed that the MLP-NN neural network model is able to follow trends of the actual rainfall, however, not very accurately. RBFNN model achieved better accuracy than the MLP-NN model. Moreover, the forecasting accuracy of the IDNN model was better than that of static network during both training and testing stages, which proves a consistent level of accuracy with seen and unseen data.


2002 ◽  
pp. 154-166 ◽  
Author(s):  
David West ◽  
Cornelius Muchineuta

Some of the concerns that plague developers of neural network decision support systems include: (a) How do I understand the underlying structure of the problem domain; (b) How can I discover unknown imperfections in the data which might detract from the generalization accuracy of the neural network model; and (c) What variables should I include to obtain the best generalization properties in the neural network model? In this paper we explore the combined use of unsupervised and supervised neural networks to address these concerns. We develop and test a credit-scoring application using a self-organizing map and a multilayered feedforward neural network. The final product is a neural network decision support system that facilitates subprime lending and is flexible and adaptive to the needs of e-commerce applications.


2011 ◽  
Vol 187 ◽  
pp. 411-415
Author(s):  
Lu Yue Xia ◽  
Hai Tian Pan ◽  
Meng Fei Zhou ◽  
Yi Jun Cai ◽  
Xiao Fang Sun

Melt index is the most important parameter in determining the polypropylene grade. Since the lack of proper on-line instruments, its measurement interval and delay are both very long. This makes the quality control quite difficult. A modeling approach based on stacked neural networks is proposed to estimation the polypropylene melt index. Single neural network model generalization capability can be significantly improved by using stacked neural networks model. Proper determination of the stacking weights is essential for good stacked neural networks model performance, so determination of appropriate weights for combining individual networks using the criteria about minimization of sum of absolute prediction error is proposed. Application to real industrial data demonstrates that the polypropylene melt index can be successfully estimated using stacked neural networks. The results obtained demonstrate significant improvements in model accuracy, as a result of using stacked neural networks model, compared to using single neural network model.


Author(s):  
NORMAN SCHNEIDEWIND

We adapt concepts from the field of neural networks to assess the reliability of software, employing cumulative failures, reliability, remaining failures, and time to failure metrics. In addition, the risk of not achieving reliability, remaining failure, and time to failure goals are assessed. The purpose of the assessment is to compare a criterion, derived from a neural network model, for estimating the parameters of software reliability metrics, with the method of maximum likelihood estimation. To our surprise the neural network method proved superior for all the reliability metrics that were assessed by virtue of yielding lower prediction error and risk. We also found that considerable adaptation of the neural network model was necessary to be meaningful for our application – only inputs, functions, neurons, weights, activation units, and outputs were required to characterize our application.


2006 ◽  
Vol 16 (04) ◽  
pp. 305-317 ◽  
Author(s):  
MEIQIN LIU

A neural-model-based control design for some nonlinear systems is addressed. The design approach is to approximate the nonlinear systems with neural networks of which the activation functions satisfy the sector conditions. A novel neural network model termed standard neural network model (SNNM) is advanced for describing this class of approximating neural networks. Full-order dynamic output feedback control laws are then designed for the SNNMs with inputs and outputs to stabilize the closed-loop systems. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. It is shown that most neural-network-based nonlinear systems can be transformed into input-output SNNMs to be stabilization synthesized in a unified way. Finally, some application examples are presented to illustrate the control design procedures.


2009 ◽  
Vol 19 (04) ◽  
pp. 285-294 ◽  
Author(s):  
ADNAN KHASHMAN

Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.


2012 ◽  
Vol 452-453 ◽  
pp. 1116-1120
Author(s):  
Hong Ping Li ◽  
Hong Li

Simulating the overlapping capillary electrophoresis spectrogram under the dissimilar conditions by the computer system , Choosing the overlapping capillary electrophoresis spectrogram simulated under the different conditions , processing the data to compose a neural network training regulations, Applying the artificial neural networks method to make a quantitative analysis about the multi-component in the overlapping capillary electrophoresis spectrogram,Using: Radial direction primary function neural network model and multi-layered perceptron neural network model. The findings indicated that, along with the increasing of the capillary electrophoresis spectrogram noise level, the related components’ ability of the two kinds of the overlapping capillary electrophoresis spectrogram by neural network model quantitative analysis drop down. Along with the increasing of the capillary electrophoresis spectrogram’s total dissociation degree, the multi-layered perceptron neural network model to the related components’ ability of the overlapping capillary electrophoresis spectum by quantitative analysis raise up.


Sign in / Sign up

Export Citation Format

Share Document