scholarly journals Effects of the Hubbard U correction on the electronic and magnetic properties of the tetragonal V2P2 sheet

RSC Advances ◽  
2021 ◽  
Vol 11 (56) ◽  
pp. 35061-35068
Author(s):  
Yusuf Zuntu Abdullahi ◽  
Sohail Ahmad ◽  
Abdullahi Abdu Ibrahim

A recent theoretical work predicted the orthorhombic phase of the V2P2 sheet with the half-metallic electronic property using a linear combination of atomic orbitals (LCAO) basis set based on density functional theory (DFT).

2021 ◽  
Vol 11 (2) ◽  
pp. 616
Author(s):  
Francesca Menescardi ◽  
Davide Ceresoli

We present a quantitative analysis of the theoretical spin density map of two ferromagnetic perovskites, YTiO3 and SrRuO3. We calculated the spin density using the standard density functional theory (DFT)+U method, where the Hubbard U correction is applied to the Ti and Ru ions, and with the pseudo-hybrid ACBN0 method, where the Hubbard U parameters are determined self-consistently. The ACBN0 calculations yielded a large value of the Hubbard U of the oxygen 2p orbitals. We also used the screened hybrid HSE06 functional, which is widely used to describe the electronic structure of oxides. We used the Quantum Theory of Atoms in Molecules (QTAIM) theory and integrated the spin density in the atomic basins instead of projecting on atomic orbitals. This way, our results can be compared to experimental reports as well as to other DFT calculations.


2013 ◽  
Vol 12 (03) ◽  
pp. 1350013 ◽  
Author(s):  
FRANCISCO CERVANTES-NAVARRO ◽  
DANIEL GLOSSMAN-MITNIK

This theoretical work applied density functional theory (DFT) to study the ground state of the indigo molecule and the effects of substituents. B3LYP was employed with the 6-31G[d,p] basis set. The obtained energies were used to describe the local reactivity [Δf(r)]. The effects of the substituents on the local reactivity were dependent on the molecular positions of the substituents.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


Author(s):  
Bole Chen ◽  
Gennady L. Gutsev ◽  
Weiguo Sun ◽  
Xiao-Yu Kuang ◽  
Cheng Lu ◽  
...  

The coalescence of two Fe8N as well as the structure of the Fe16N2 cluster were studied using density functional theory with the generalized gradient approximation and a basis set of...


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


Author(s):  
Nasly Y. Martínez Velásquez ◽  
Jairo Arbey Rodríguez Martínez

Mediante el uso de principios basados en la teoría del funcional de la densidad - DFT (Density Functional Theory) se calcularon las propiedades electrónicas y estructurales del compuesto Ga1-xCrxAs. Empleando el método de ondas planas y la aproximación de pseudopotenciales atómicos ultra suaves se resolvieron las ecuaciones de Kohn-Sham. Para la energía de intercambio y correlación se empleó la aproximación de gradiente generalizado, dentro de la parametrización de Perdew-Burke-Ernzerhof (PBE) tal como está implementada en el código computacional Quantum-Espresso. Al dopar GaAs con impurezas de Cr, el sistema exhibe un comportamiento tipo half-metallic. Dicho material puede ser usado en espintrónica. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.


2012 ◽  
Vol 535-537 ◽  
pp. 1291-1294 ◽  
Author(s):  
Xiu De Yang ◽  
Bo Wu ◽  
Song Zhang

By using generalized gradient approximation (GGA) scheme within the density functional theory (DFT), the electronic and magnetic properties of Hg2CuTi-type Heusler alloy Ti2FeAl were investigated. The results reveal that a 100% spin polarization appears at Fermi level (εF) in Ti2FeAl, and is maintained during lattice range of 5.1Å~6.2Å. Ti2FeAl is one of stable Half-Metallic Ferromagnets (HMF) with a spin-minority gap of 0.5 eV at εF and total magnetic moment of 1μB per unit cell. Our studies also indicate that the competition between RKKY-type indirect exchange and direct hybridization of d-electronic atoms plays a dominating role in determining the magnetism.


Sign in / Sign up

Export Citation Format

Share Document