Mesoporous silica supported CeO2/Cellulose cathode catalyst for efficient bioelectrochemical reduction of inorganic carbon to biofuels

Author(s):  
Dayakar Thatikayala ◽  
Deepak Pant ◽  
Booki Min

In this study, a novel efficient cathode electrode was fabricated to convert inorganic carbon to volatile fatty acids (VFAs) through microbial electrosynthesis (MES) in a single chamber reactor. The cathode...

2018 ◽  
Vol 71 ◽  
pp. 785-791 ◽  
Author(s):  
Andrea Schievano ◽  
Alessandra Colombo ◽  
Alessandra Cossettini ◽  
Andrea Goglio ◽  
Vincenzo D'Ardes ◽  
...  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (5) ◽  
pp. 53-61 ◽  
Author(s):  
PATRICK HUBER ◽  
SYLVIE NIVELON ◽  
PATRICE NORTIER

Calcium carbonate scaling often is a critical problem for recycled board mills that have closed water circuits. The objective of this study was to determine local scaling risks throughout the production process. To predict scaling potential, we calculated several saturation indexes, based on speciation determined from detailed water analyses. Calculated scaling trends are in accordance with observed dissolution and precipitation of calcium carbonate in the process, when considering local aeration phenomena. The importance of volatile fatty acids (resulting from anaerobic bacterial activity) in calco-carbonic equilibriums is discussed, and taken into account in the speciation calculation. We also demonstrate the need to measure inorganic carbon instead of alkalinity in such conditions. This makes typical scaling indexes, such as the Ryznar Stability Index, irrelevant to predict scaling risk in closed circuit conditions; thus, it is necessary to use general speciation methods, as described in this paper.


2019 ◽  
Vol 26 (2) ◽  
pp. 63-71
Author(s):  
Ling Leng ◽  
Ying Wang ◽  
Peixian Yang ◽  
Takashi Narihiro ◽  
Masaru Konishi Nobu ◽  
...  

Chain elongation of volatile fatty acids for medium chain fatty acids production (e.g. caproate) is an attractive approach to treat wastewater anaerobically and recover resource simultaneously. Undefined microbial consortia can be tailored to achieve chain elongation process with selective enrichment from anaerobic digestion sludge, which has advantages over pure culture approach for cost-efficient application. Whilst the metabolic pathway of the dominant caproate producer, Clostridium kluyveri, has been annotated, the role of other coexisting abundant microbiomes remained unclear. To this end, an ethanol-acetate fermentation inoculated with fresh digestion sludge at optimal conditions was conducted. Also, physiological study, thermodynamics and 16 S rRNA gene sequencing to elucidate the biological process by linking the system performance and dominant microbiomes were integrated. Results revealed a possible synergistic network in which C. kluyveri and three co-dominant species, Desulfovibrio vulgaris, Fusobacterium varium and Acetoanaerobium sticklandii coexisted. D. vulgaris and A. sticklandii (F. varium) were likely to boost the carboxylates chain elongation by stimulating ethanol oxidation and butyrate production through a syntrophic partnership with hydrogen (H2) serving as an electron messenger. This study unveils a synergistic microbial network to boost caproate production in mixed culture carboxylates chain elongation.


Sign in / Sign up

Export Citation Format

Share Document