Nano structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives

Author(s):  
Zelalem Bitew ◽  
Mullugeta Tessema ◽  
Yonas Beyene ◽  
Meareg Amare

There is a growing worldwide demand in developing lithium ion batteries with high energy densities and longer cycle life. In recent years, rechargeable lithium ion batteries have become important alternative...

2021 ◽  
Vol 2 (6) ◽  
pp. 2170015
Author(s):  
Chengzhi Zhang ◽  
Fei Wang ◽  
Jian Han ◽  
Shuo Bai ◽  
Jun Tan ◽  
...  

2018 ◽  
Vol 6 (42) ◽  
pp. 20564-20620 ◽  
Author(s):  
Hailin Zhang ◽  
Hongbin Zhao ◽  
Muhammad Arif Khan ◽  
Wenwen Zou ◽  
Jiaqiang Xu ◽  
...  

This article comprehensively reviews the recent progress in the development of key components of lithium-ion batteries, including positive/negative electrodes, electrolytes and separators. The necessity of developing batteries with high energy/power density and long cycle-life is emphasized both in terms of industrial and academic perspectives.


2021 ◽  
pp. 2100009
Author(s):  
Chengzhi Zhang ◽  
Fei Wang ◽  
Jian Han ◽  
Shuo Bai ◽  
Jun Tan ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
pp. 182-190
Author(s):  
Peilin Yu ◽  
Mingyang Zhang

Lithium-ion batteries have become a new hot spot in battery research due to their high-energy density, environmental friendliness, and multiple charge/discharge times. Silicon-based materials have become the best choice of anode materials for lithium-ion batteries due to their advantages of low lithium insertion voltage, high specific theoretical capacity, and large reserves on the planet. However, the silicon-based material has a large volume expansion (about 300%) during cycling, which causes the active silicon to fall off from the surface of the conducting material. This expansion will also break the solid electrolyte interphase (SEI) on the surface of the silicon electrode, and will consume additional Li+, causing the battery’s capacity to drop rapidly as the times of circulation increases. In addition, the conductivity of silicon-based materials is lower than that of graphite anode, which have already been used commercially, led to the worse performance of the silicon anode. These drawbacks force silicon-based anode materials to encounter huge resistance in the commercialization process. Therefore, research on the improvement of performance of the silicon-based anode materials is of great significance. 


Author(s):  
Wesley M. Dose ◽  
Soojeong Kim ◽  
Qian Liu ◽  
Stephen E. Trask ◽  
Alison R. Dunlop ◽  
...  

Over lithiated Li1+xNMCO2 is introduced as a dual-functional lithium source and cathode material to increase the lithium inventory and significantly improve the energy density and cycle life of lithium-ion batteries with a Si-based anode.


2019 ◽  
Vol 7 (16) ◽  
pp. 9432-9446 ◽  
Author(s):  
Zhixin Xu ◽  
Jun Yang ◽  
Hongping Li ◽  
Yanna Nuli ◽  
Jiulin Wang

Recent progress in electrolytes from the liquid to the solid state for Si-based anodes is comprehensively summarized in this review article.


2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13539-13547 ◽  
Author(s):  
Min Su Jo ◽  
Gi Dae Park ◽  
Yun Chan Kang ◽  
Jung Sang Cho

An efficient and simple synthetic strategy to prepare interconnected hierarchically porous anatase TiO2 nanofibers as anode materials for LIBs is introduced.


RSC Advances ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 6660-6666 ◽  
Author(s):  
Jun Wang ◽  
Shengli Li ◽  
Yi Zhao ◽  
Juan Shi ◽  
Lili Lv ◽  
...  

With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries.


2018 ◽  
Vol 6 (16) ◽  
pp. 7070-7079 ◽  
Author(s):  
Long Pan ◽  
Zheng-Wei Zhou ◽  
Yi-Tao Liu ◽  
Xu-Ming Xie

A universal strategy is proposed for thein situsynthesis of TiO2(B) nanosheets on pristine carbon nanomaterials. Benefiting from a remarkable synergistic effect, the resulting nanohybrids exhibit superior high-rate lithium storage performance. In this sense, our strategy may open the door to next-generation, high-power and high-energy anode materials for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document