scholarly journals Guided run-and-tumble active particles: wall accumulation and preferential deposition

Soft Matter ◽  
2021 ◽  
Vol 17 (39) ◽  
pp. 8858-8866
Author(s):  
Chamkor Singh

Asymmetric rotational drift induced by guiding fields, and variability in bacterial running strategies, are important physical mechanisms to understand the organization and early biofilm formation in collections of confined active particles.

Soft Matter ◽  
2022 ◽  
Author(s):  
Chamkor Singh

Correction for ‘Guided run-and-tumble active particles: wall accumulation and preferential deposition’ by Chamkor Singh, Soft Matter, 2021, 17, 8858–8866, DOI: 10.1039/D1SM00775K.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 23-42 ◽  
Author(s):  
A. Karimi ◽  
D. Karig ◽  
A. Kumar ◽  
A. M. Ardekani

A review on the physical processes involved in biofilm formation and the lab-on-a-chip techniques utilized to unravel the associated mechanisms.


Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


Author(s):  
Koenraad G F Janssens ◽  
Omer Van der Biest ◽  
Jan Vanhellemont ◽  
Herman E Maes ◽  
Robert Hull

There is a growing need for elastic strain characterization techniques with submicrometer resolution in several engineering technologies. In advanced material science and engineering the quantitative knowledge of elastic strain, e.g. at small particles or fibers in reinforced composite materials, can lead to a better understanding of the underlying physical mechanisms and thus to an optimization of material production processes. In advanced semiconductor processing and technology, the current size of micro-electronic devices requires an increasing effort in the analysis and characterization of localized strain. More than 30 years have passed since electron diffraction contrast imaging (EDCI) was used for the first time to analyse the local strain field in and around small coherent precipitates1. In later stages the same technique was used to identify straight dislocations by simulating the EDCI contrast resulting from the strain field of a dislocation and comparing it with experimental observations. Since then the technique was developed further by a small number of researchers, most of whom programmed their own dedicated algorithms to solve the problem of EDCI image simulation for the particular problem they were studying at the time.


2000 ◽  
Vol 660 ◽  
Author(s):  
Thomas M. Brown ◽  
Ian S. Millard ◽  
David J. Lacey ◽  
Jeremy H. Burroughes ◽  
Richard H. Friend ◽  
...  

ABSTRACTThe semiconducting-polymer/injecting-electrode heterojunction plays a crucial part in the operation of organic solid state devices. In polymer light-emitting diodes (LEDs), a common fundamental structure employed is Indium-Tin-Oxide/Polymer/Al. However, in order to fabricate efficient devices, alterations to this basic structure have to be carried out. The insertion of thin layers, between the electrodes and the emitting polymer, has been shown to greatly enhance LED performance, although the physical mechanisms underlying this effect remain unclear. Here, we use electro-absorption measurements of the built-in potential to monitor shifts in the barrier height at the electrode/polymer interface. We demonstrate that the main advantage brought about by inter-layers, such as poly(ethylenedioxythiophene)/poly(styrene sulphonic acid) (PEDOT:PSS) at the anode and Ca, LiF and CsF at the cathode, is a marked reduction of the barrier to carrier injection. The electro- absorption results also correlate with the electroluminescent characteristics of the LEDs.


Author(s):  
O. Iungin ◽  
L. Maistrenko ◽  
P. Rebrykova ◽  
I. Duka

Sign in / Sign up

Export Citation Format

Share Document