Emergence and dynamics of unconfined self-organized vortices in active magnetic roller liquids

Soft Matter ◽  
2021 ◽  
Author(s):  
Koohee Han ◽  
Andreas Glatz ◽  
Alexey Snezhko

Actively driven colloids demonstrate complex out-of-equilibrium dynamics often rivaling self-organized patterns and collective behavior observed in living systems. Recent studies revealed the emergence of steady macroscopic states with multiple interacting...

1999 ◽  
Vol 13 (4) ◽  
pp. 169-192 ◽  
Author(s):  
J. Barkley Rosser

Complex economic nonlinear dynamics endogenously do not converge to a point, a limit cycle, or an explosion. Their study developed out of earlier studies of cybernetic, catastrophic, and chaotic systems. Complexity analysis stresses interactions among dispersed agents without a global controller, tangled hierarchies, adaptive learning, evolution, and novelty, and out-of-equilibrium dynamics. Complexity methods include interacting particle systems, self-organized criticality, and evolutionary game theory, to simulate artificial stock markets and other phenomena. Theoretically, bounded rationality replaces rational expectations. Complexity theory influences empirical methods and restructures policy debates.


1997 ◽  
Vol 228 (3) ◽  
pp. 202-204 ◽  
Author(s):  
M.E.J. Newman ◽  
Simon M. Fraser ◽  
Kim Sneppen ◽  
William A. Tozier

2009 ◽  
Vol 07 (01) ◽  
pp. 243-268 ◽  
Author(s):  
KUMAR SELVARAJOO ◽  
MASARU TOMITA ◽  
MASA TSUCHIYA

Complex living systems have shown remarkably well-orchestrated, self-organized, robust, and stable behavior under a wide range of perturbations. However, despite the recent generation of high-throughput experimental datasets, basic cellular processes such as division, differentiation, and apoptosis still remain elusive. One of the key reasons is the lack of understanding of the governing principles of complex living systems. Here, we have reviewed the success of perturbation–response approaches, where without the requirement of detailed in vivo physiological parameters, the analysis of temporal concentration or activation response unravels biological network features such as causal relationships of reactant species, regulatory motifs, etc. Our review shows that simple linear rules govern the response behavior of biological networks in an ensemble of cells. It is daunting to know why such simplicity could hold in a complex heterogeneous environment. Provided physical reasons can be explained for these phenomena, major advancement in the understanding of basic cellular processes could be achieved.


2014 ◽  
pp. 40-50
Author(s):  
Bei Wang ◽  
Dung Hoang ◽  
Idris Daiz ◽  
Chiedu Okpala ◽  
Tarek M. Sobh

The Collective Intelligence Research Tool (CIRT) is an experimental software and hardware research tool. It provides an inexpensive and efficient alternative research implementation that demonstrates simulations of the collective behavior of self-organized systems, primarily social insects. The software focuses on 2D simulations of the woodchip-collecting behavior of termites and 3D simulations of the building behavior of wasps. The hardware simulation employs a Boe-Bot robot, which has the potential of simulating simple movements of a social insect, by extending its functionality through adding sensors and integrating a control chip.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 142
Author(s):  
Piotr Jedrzejowicz ◽  
Izabela Wierzbowska

One of the possible approaches to solving difficult optimization problems is applying population-based metaheuristics. Among such metaheuristics, there is a special class where searching for the best solution is based on the collective behavior of decentralized, self-organized agents. This study proposes an approach in which a swarm of agents tries to improve solutions from the population of solutions. The process is carried out in parallel threads. The proposed algorithm—based on the mushroom-picking metaphor—was implemented using Scala in an Apache Spark environment. An extended computational experiment shows how introducing a combination of simple optimization agents and increasing the number of threads may improve the results obtained by the model in the case of TSP and JSSP problems.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Per Sebastian Skardal ◽  
Alex Arenas

AbstractSynchronization processes play critical roles in the functionality of a wide range of both natural and man-made systems. Recent work in physics and neuroscience highlights the importance of higher-order interactions between dynamical units, i.e., three- and four-way interactions in addition to pairwise interactions, and their role in shaping collective behavior. Here we show that higher-order interactions between coupled phase oscillators, encoded microscopically in a simplicial complex, give rise to added nonlinearity in the macroscopic system dynamics that induces abrupt synchronization transitions via hysteresis and bistability of synchronized and incoherent states. Moreover, these higher-order interactions can stabilize strongly synchronized states even when the pairwise coupling is repulsive. These findings reveal a self-organized phenomenon that may be responsible for the rapid switching to synchronization in many biological and other systems that exhibit synchronization without the need of particular correlation mechanisms between the oscillators and the topological structure.


2020 ◽  
Vol 117 (18) ◽  
pp. 9706-9711 ◽  
Author(s):  
Koohee Han ◽  
Gašper Kokot ◽  
Oleh Tovkach ◽  
Andreas Glatz ◽  
Igor S. Aranson ◽  
...  

Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a challenge. Here, we show by experiments and computational modeling that concentrated magnetic rollers self-organize into multivortex states in an unconfined environment. We find that the neighboring vortices more likely occur with the opposite sense of rotation. Our studies provide insights into the mechanism for the emergence of coherent collective motion on the macroscale from the coupling between microscale rotation and translation of individual active elements. These results may stimulate design strategies for self-assembled dynamic materials and microrobotics.


Author(s):  
Koichiro Morihiro ◽  
◽  
Teijiro Isokawa ◽  
Haruhiko Nishimura ◽  
Masahito Tomimasu ◽  
...  

Collective behavior such as bird flocking, land animal herding, and fish schooling is well known in nature. Many observations have shown that there are no leaders to control the behavior of a group. Several models have been proposed for describing the grouping behavior, which we regard as a distinctive example of aggregate motions. In these models, a fixed rule is provided for each of the individuals a priori for their interactions in a reductive and rigid manner. In contrast, we propose a new framework for the self-organized grouping of agents by reinforcement learning. It is important to introduce a learning scheme for causing collective behavior in artificial autonomous distributed systems. The behavior of agents is demonstrated and evaluated through computer simulations and it is shown that their grouping behavior emerges as a result of learning.


Sign in / Sign up

Export Citation Format

Share Document