scholarly journals Multiple droplets on a conical fiber: formation, motion, and droplet mergers

Soft Matter ◽  
2022 ◽  
Author(s):  
Carmen L. Lee ◽  
Tak Shing Chan ◽  
Andreas Carlson ◽  
Kari Dalnoki-Veress

Small droplets on slender conical fibers spontaneously move along the fiber due to capillary action. The droplet motion depends on the geometry of the cone, the surface wettability, the surface...

Author(s):  
Woonhong Yeo ◽  
Jae-Hyun Chung ◽  
Kyong-Hoon Lee ◽  
Yaling Liu ◽  
Wing Kam Liu

We present a novel hybrid fiber fabrication method for nanostructured hybrid-materials, using an AC electric field and capillary action. Through this fabrication process, hybrid fibers composed of single walled carbon nanotubes (SWCNTs) and silicon carbide (SiC) nanowires were systematically manufactured. It was demonstrated that both diameter and length of hybrid nanofibers could be controlled by manipulating parameters, such as the mixing ratio of SWCNTs to SiC nanowires, concentration of solution, immersion time, volume of solution, and withdrawal rate. In the fabricated hybrid fibers, the SiC nanowires functioned as a structural frame (host filler materials), while SWCNTs were employed for their extraordinary mechanical and electrical properties as a binder or net. Using this method, the fabrication speed of the hybrid fiber was increased by 20 fold compared to the existing method[1]. According to the simulation and modeling results, the fibers are formed by the following three steps; (1) nanowire bridge formation by dielectrophoresis in solution (2) nanowire fiber formation by compression due to capillary action (3) alignment by the torque due to the capillary action. The proposed processing technology may provide an ample opportunity for fabricating a long hybrid-nanofiber.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Lin Qi ◽  
Ye Niu ◽  
Cody Ruck ◽  
Yi Zhao

Long-distance droplet motion and selective droplet manipulation on repeated hydrophobic surface patterns with gradient wettability by in-plane cyclic vibration.


Author(s):  
László G. Kömüves

Light microscopic immunohistochemistry based on the principle of capillary action staining is a widely used method to localize antigens. Capillary action immunostaining, however, has not been tested or applied to detect antigens at the ultrastructural level. The aim of this work was to establish a capillary action staining method for localization of intracellular antigens, using colloidal gold probes.Post-embedding capillary action immunocytochemistry was used to detect maternal IgG in the small intestine of newborn suckling piglets. Pieces of the jejunum of newborn piglets suckled for 12 h were fixed and embedded into LR White resin. Sections on nickel grids were secured on a capillary action glass slide (100 μm wide capillary gap, Bio-Tek Solutions, Santa Barbara CA, distributed by CMS, Houston, TX) by double sided adhesive tape. Immunolabeling was performed by applying reagents over the grids using capillary action and removing reagents by blotting on filter paper. Reagents for capillary action staining were from Biomeda (Foster City, CA). The following steps were performed: 1) wet the surface of the sections with automation buffer twice, 5 min each; 2) block non-specific binding sites with tissue conditioner, 10 min; 3) apply first antibody (affinity-purified rabbit anti-porcine IgG, Sigma Chem. Co., St. Louis, MO), diluted in probe diluent, 1 hour; 4) wash with automation buffer three times, 5 min each; 5) apply gold probe (goat anti-rabbit IgG conjugated to 10 nm colloidal gold, Zymed Laboratories, South San Francisco, CA) diluted in probe diluent, 30 min; 6) wash with automation buffer three times, 5 min each; 7) post-fix with 5% glutaraldehyde in PBS for 10 min; 8) wash with PBS twice, 5 min each; 9) contrast with 1% OSO4 in PBS for 15 min; 10) wash with PBS followed by distilled water for5 min each; 11) stain with 2% uranyl acetate for 10 min; 12) stain with lead citrate for 2 min; 13) wash with distilled water three times, 1 min each. The glass slides were separated, and the grids were air-dried, then removed from the adhesive tape. The following controls were used to ensure the specificity of labeling: i) omission of the first antibody; ii) normal rabbit IgG in lieu of first antibody; iii) rabbit anti-porcine IgG absorbed with porcine IgG.


2006 ◽  
Vol 16 (5) ◽  
pp. 563-578 ◽  
Author(s):  
John A. Schwille ◽  
Richard M. Lueptow

Author(s):  
Taylor P. Allred ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

Sign in / Sign up

Export Citation Format

Share Document