scholarly journals Mechanical Strength Enhancement by Grain Size Reduction in a Soft Colloidal Polycrystal

Soft Matter ◽  
2021 ◽  
Author(s):  
Ahmed Mourchid ◽  
Imane Boucenna ◽  
Florent Carn

It has long been known that the mechanical strength of finely-grained solid state polycrystals could be enhanced when the grain size is reduced. Indeed, the equation linking the yield stress...

2019 ◽  
Vol 40 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Manzar Abbas ◽  
Ilona Peszlen ◽  
Rui Shi ◽  
Hoon Kim ◽  
Rui Katahira ◽  
...  

Abstract Cellulose synthase A genes (CesAs) are responsible for cellulose biosynthesis in plant cell walls. In this study, functions of secondary wall cellulose synthases PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B were characterized during wood formation in Populus trichocarpa (Torr. & Gray). CesA RNAi knockdown transgenic plants exhibited stunted growth, narrow leaves, early necrosis, reduced stature, collapsed vessels, thinner fiber cell walls and extended fiber lumen diameters. In the RNAi knockdown transgenics, stems exhibited reduced mechanical strength, with reduced modulus of rupture (MOR) and modulus of elasticity (MOE). The reduced mechanical strength may be due to thinner fiber cell walls. Vessels in the xylem of the transgenics were collapsed, indicating that water transport in xylem may be affected and thus causing early necrosis in leaves. A dramatic decrease in cellulose content was observed in the RNAi knockdown transgenics. Compared with wildtype, the cellulose content was significantly decreased in the PtrCesA4, PtrCesA7 and PtrCesA8 RNAi knockdown transgenics. As a result, lignin and xylem contents were proportionally increased. The wood composition changes were confirmed by solid-state NMR, two-dimensional solution-state NMR and sum-frequency-generation vibration (SFG) analyses. Both solid-state nuclear magnetic resonance (NMR) and SFG analyses demonstrated that knockdown of PtrCesAs did not affect cellulose crystallinity index. Our results provided the evidence for the involvement of PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B in secondary cell wall formation in wood and demonstrated the pleiotropic effects of their perturbations on wood formation.


Author(s):  
Shuyuan Li ◽  
Zhongyuan Huang ◽  
Yinguo Xiao ◽  
Chunwen Sun

Solid-state electrolytes (SSEs) are expected to replace liquid electrolytes in lithium metal batteries (LMBs) with good safety and mechanical strength. However, the existing problems of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte like their...


2004 ◽  
Vol 324 (2-3) ◽  
pp. 140-151 ◽  
Author(s):  
J.Y Huang ◽  
J.R Hwang ◽  
J.J Yeh ◽  
C.Y Chen ◽  
R.C Kuo ◽  
...  

Author(s):  
N. A. Zontsika ◽  
A. Abdul-Latif ◽  
S. Ramtani

Motivated by the already developed micromechanical approach (Abdul-Latif et al., 2002, “Elasto-Inelastic Self-Consistent Model for Polycrystals,” ASME J. Appl. Mech., 69(3), pp. 309–316.), a new extension is proposed for describing the mechanical strength of ultrafine-grained (ufg) materials whose grain sizes, d, lie in the approximate range of 100 nm < d < 1000 nm as well as for the nanocrystalline (nc) materials characterized by d≤100 nm. In fact, the dislocation kinematics approach is considered for characterizing these materials where grain boundary is taken into account by a thermal diffusion concept. The used model deals with a soft nonincremental inclusion/matrix interaction law. The overall kinematic hardening effect is described naturally by the interaction law. Within the framework of small deformations hypothesis, the elastic part, assumed to be uniform and isotropic, is evaluated at the granular level. The heterogeneous inelastic part of deformation is locally determined. In addition, the intragranular isotropic hardening is modeled based on the interaction between the activated slip systems within the same grain. Affected by the grain size, the mechanical behavior of the ufg as well as the nc materials is fairly well described. This development is validated through several uniaxial stress–strain experimental results of copper and nickel.


2000 ◽  
Vol 87 (9) ◽  
pp. 6860-6862 ◽  
Author(s):  
Satoru Yoshimura ◽  
D. D. Djayaprawira ◽  
Tham Kim Kong ◽  
Yusuke Masuda ◽  
Hiroki Shoji ◽  
...  

1996 ◽  
Vol 18 (2) ◽  
pp. 121-125 ◽  
Author(s):  
M.P. Nandakumar ◽  
M.S. Thakur ◽  
K.S.M.S. Raghavarao ◽  
N.P. Ghildyal

2014 ◽  
Vol 979 ◽  
pp. 220-223
Author(s):  
Piyamas Chainok ◽  
Supphadate Sujinnapram ◽  
Tunyanop Nilkamjon ◽  
Sermsuk Ratreng ◽  
Kiattipong Somsri ◽  
...  

In this research, the Y123 (YBa2Cu3Ox) and Y134 (YBa3Cu4Ox) superconductors were synthesized by solid state reaction and melt process, respectively. The crystal structure of all the samples were then determined using the Rietveld full-profile analysis method to indicate orthorhombic structure. The resistivity measurements showing Tc onset of Y123 lower than Y134 for solid state reaction but higher than Y134 melt process. However, the critical temperature off-set of Y134 has lower than of Y123. The SEM and EDX show that all samples were inhomogeneous. The SEM micrograph for solid state reaction Y123 has many pores between the grain and the grain size clearly demonstrated and bigger than Y134. It was seen that these pores are party eliminated in melt process samples. FTIR spectra detected the trace of carbonate residue in all samples.


2008 ◽  
Vol 62 (17-18) ◽  
pp. 2947-2949 ◽  
Author(s):  
J.R. Martínez ◽  
J.A. de la Cruz-Mendoza ◽  
S.A. Palomares-Sánchez ◽  
G. Vázquez-García ◽  
G. Ortega-Zarzosa ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bambar Davaasuren ◽  
Qianli Ma ◽  
Alexandra von der Heiden ◽  
Frank Tietz

Abstract Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.


Sign in / Sign up

Export Citation Format

Share Document