Interpenetrating Gels as Conducting/Adhering Matrices Enabling High-Performance Silicon Anodes

Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 505 ◽  
Author(s):  
Samarjeet Singh Siwal ◽  
Qibo Zhang ◽  
Nishu Devi ◽  
Vijay Kumar Thakur

In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.


2015 ◽  
Vol 17 (2) ◽  
pp. 732-750 ◽  
Author(s):  
Kunfeng Chen ◽  
Congting Sun ◽  
Dongfeng Xue

A review of morphology engineering of high performance binary oxide electrode materials for electrochemical energy storage is presented.


2019 ◽  
Vol 7 (6) ◽  
pp. 2875-2883 ◽  
Author(s):  
Fan Yu ◽  
Xin Xiong ◽  
Liu-Yin Zhou ◽  
Jia-Luo Li ◽  
Ji-Yuan Liang ◽  
...  

Novel carbon materials containing Ni, P, N and O were fabricated from the sacrificial MOF template, which exhibits high performance in electrochemical energy storage.


2016 ◽  
Vol 4 (47) ◽  
pp. 18335-18341 ◽  
Author(s):  
Zhenhu Li ◽  
Xu Li ◽  
Lu Xiang ◽  
Xiong Xie ◽  
Xue Li ◽  
...  

Novel 3D hierarchical holey (Co, Ni)3S2 nanostructures are fabricated and exhibit outstanding comprehensive performance as electrodes for electrochemical energy storage.


2015 ◽  
Vol 3 (42) ◽  
pp. 21298-21307 ◽  
Author(s):  
Hong-Qiang Wang ◽  
Guan-Hua Yang ◽  
Li-San Cui ◽  
Ze-Sheng Li ◽  
Zhi-Xiong Yan ◽  
...  

Three-dimensional (3D) graphene-based materials have received increasing attention due to their application potential in electrochemical energy storage and conversion.


2020 ◽  
Vol 8 (36) ◽  
pp. 18425-18463
Author(s):  
Hongkang Wang ◽  
Ruifeng Qian ◽  
Yonghong Cheng ◽  
Hong-Hui Wu ◽  
Xianwen Wu ◽  
...  

This Review summarized the latest progress in structural engineering, material fabrication and enhancement of the electrochemical performances of micro/nanostructured TiNb2O7 and its analogues for high-performance energy storage systems.


2015 ◽  
Vol 44 (17) ◽  
pp. 6230-6257 ◽  
Author(s):  
Kunfeng Chen ◽  
Shuyan Song ◽  
Fei Liu ◽  
Dongfeng Xue

This review elucidates the structural design methodologies toward high-performance graphene-based electrode materials for electrochemical energy storage devices.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-27 ◽  
Author(s):  
Ruizi Li ◽  
Yanping Zhou ◽  
Wenbin Li ◽  
Jixin Zhu ◽  
Wei Huang

Biomass-derived carbon materials (B-d-CMs) are considered as a group of very promising electrode materials for electrochemical energy storage (EES) by virtue of their naturally diverse and intricate microarchitectures, extensive and low-cost source, environmental friendliness, and feasibility to be produced in a large scale. However, the practical application of raw B-d-CMs in EES is limited by their relatively rare storage sites and low diffusion kinetics. In recent years, various strategies from structural design to material composite manipulation have been explored to overcome these problems. In this review, a controllable design of B-d-CM structures boosting their storage sites and diffusion kinetics for EES devices including SIBs, Li-S batteries, and supercapacitors is systematically summarized from the aspects of effects of pseudographic structure, hierarchical pore structure, surface functional groups, and heteroatom doping of B-d-CMs, as well as the composite structure of B-d-CMs, aiming to provide guidance for further rational design of the B-d-CMs for high-performance EES devices. Besides, the contemporary challenges and perspectives on B-d-CMs and their composites are also proposed for further practical application of B-d-CMs for EES devices.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 844
Author(s):  
Shiqi Li ◽  
Zhaoyang Fan

Electrochemical energy storage is becoming essential for portable electronics, electrified transportation, integration of intermittent renewable energy into grids, and many other energy or power applications. The electrode materials and their structures, in addition to the electrolytes, play key roles in supporting a multitude of coupled physicochemical processes that include electronic, ionic, and diffusive transport in electrode and electrolyte phases, electrochemical reactions and material phase changes, as well as mechanical and thermal stresses, thus determining the storage energy density and power density, conversion efficiency, performance lifetime, and system cost and safety. Different material chemistries and multiscale porous structures are being investigated for high performance and low cost. The aim of this Special Issue is to report the recent advances of materials used in electrochemical energy storage that encompasses supercapacitors and rechargeable batteries.


Sign in / Sign up

Export Citation Format

Share Document