Spatially Resolved and Quantitatively Revealed Charge Transfer between Single Atoms and Catalyst Supports

Author(s):  
Bin Di ◽  
Zhantao Peng ◽  
Zhongyi Wu ◽  
Xiong Zhou ◽  
Kai Wu

The charge state of supported single atoms is one of the most significant aspects determining the catalytic performance of single atom catalysts (SACs) which have drawn tremendous attention in recent...

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yujing Ren ◽  
Yan Tang ◽  
Leilei Zhang ◽  
Xiaoyan Liu ◽  
Lin Li ◽  
...  

Abstract Heterogeneous single-atom catalyst (SAC) opens a unique entry to establishing structure–performance relationship at the molecular level similar to that in homogeneous catalysis. The challenge lies in manipulating the coordination chemistry of single atoms without changing single-atom dispersion. Here, we develop an efficient synthetic method for SACs by using ethanediamine to chelate Pt cations and then removing the ethanediamine by a rapid thermal treatment (RTT) in inert atmosphere. The coordination chemistry of Pt single atoms on a Fe2O3 support is finely tuned by merely adjusting the RTT temperature. With the decrease in Pt-O coordination number, the oxidation state of Pt decreases, and consequently the hydrogenation activity increases to a record level without loss of chemoselectivity. The tunability of the local coordination chemistry, oxidation states of the metal, and the catalytic performance of single atoms reveals the unique role of SACs as a bridge between heterogeneous and homogeneous catalysis.


Nanoscale ◽  
2021 ◽  
Author(s):  
Mengru Ren ◽  
Lili Zhang ◽  
Yan Di Zhu ◽  
Jin Lei Shi ◽  
Xing Ju Zhao ◽  
...  

Theoretical design and experimental fabrication of highly efficient single-atom catalysts (SACs) containing isolated metal atoms monodispersed on appropriate substrates have surged to the forefront of heterogeneous catalysis in recent years....


2021 ◽  
Author(s):  
Jiaxu Liu ◽  
Yajun Zou ◽  
Daniel Cruz ◽  
Aleksandr Savateev ◽  
Markus Antonietti ◽  
...  

Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single-atom-dispersed photocatalysts. However, the relation of catalysts textural properties with their photophysical properties and as a result activity in photocatalytic applications is rarely elaborated. Herein we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly-dispersed Ag and Cu species on mesoporous graphitic C<sub>3</sub>N<sub>4</sub>. We show that adjustment of materials textural properties and thereby metal single atoms coordination mode enables ligand-to-metal (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), a property tha was long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutant under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the amount of toxic organic fragmentation products, while leading to a higher selectivity towards full calcination. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of the surface state of single-atom catalysts. The concepts can be exploited further to rationally design and optimize other single-atom materials.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Zhu ◽  
Yiwei Han ◽  
Shuai Liu ◽  
Bo Yuan ◽  
Yatao Liu ◽  
...  

In recent years, single-atom catalysts (SACs) have received extensive attention due to their unique structure and excellent performance. Currently, a variety of porous materials are used as confined single-atom catalysts, such as zeolites, metal-organic frameworks (MOFs), or carbon nitride (CN). The support plays a key role in determining the coordination structure of the catalytic metal center and its catalytic performance. For example, the strong interaction between the metal and the carrier induces the charge transfer between the metal and the carrier, and ultimately affects the catalytic behavior of the single-atom catalyst. Porous materials have unique chemical and physical properties including high specific surface area, adjustable acidity and shape selectivity (such as zeolites), and are rational support materials for confined single atoms, which arouse research interest in this field. This review surveys the latest research progress of confined single-atom catalysts for porous materials, which mainly include zeolites, CN and MOFs. The preparation methods, characterizations, application fields, and the interaction between metal atoms and porous support materials of porous material confined single-atom catalysts are discussed. And we prospect for the application prospects and challenges of porous material confined single-atom catalysts.


2020 ◽  
Vol 8 (33) ◽  
pp. 17238-17247
Author(s):  
Zhixin Su ◽  
Rui Pang ◽  
Xiaoyan Ren ◽  
Shunfang Li

Single-atom-thick-PdN magic nanomotifs are demonstrated to be stabilized on defect-free MoS2 overlayer supported on Ag(111) via the synergetic role of charge transfer among the Pd active sites, leading to superior catalytic performance to SAC-Pd1.


2021 ◽  
Author(s):  
Minzhen Jian ◽  
Jin-Xun Liu ◽  
Wei-Xue Li

Hydroxyl group can stabilize significantly Ni single atom by forming Ni1(OH)2 complexes on anatase TiO2(101), which displays high catalytic performance in acetylene semi-hydrogenation.


2021 ◽  
Author(s):  
Jiaxu Liu ◽  
Yajun Zou ◽  
Daniel Cruz ◽  
Aleksandr Savateev ◽  
Markus Antonietti ◽  
...  

Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single-atom-dispersed photocatalysts. However, the relation of catalysts textural properties with their photophysical properties and as a result activity in photocatalytic applications is rarely elaborated. Herein we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly-dispersed Ag and Cu species on mesoporous graphitic C<sub>3</sub>N<sub>4</sub>. We show that adjustment of materials textural properties and thereby metal single atoms coordination mode enables ligand-to-metal (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), a property tha was long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutant under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the amount of toxic organic fragmentation products, while leading to a higher selectivity towards full calcination. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of the surface state of single-atom catalysts. The concepts can be exploited further to rationally design and optimize other single-atom materials.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiang-Qiang Yan ◽  
Dao-Xiong Wu ◽  
Sheng-Qi Chu ◽  
Zhi-Qin Chen ◽  
Yue Lin ◽  
...  

Abstract Metal–support interaction is of great significance for catalysis as it can induce charge transfer between metal and support, tame electronic structure of supported metals, impact adsorption energy of reaction intermediates, and eventually change the catalytic performance. Here, we report the metal size-dependent charge transfer reversal, that is, electrons transfer from platinum single atoms to sulfur-doped carbons and the carbon supports conversely donate electrons to Pt when their size is expanded to ~1.5 nm cluster. The electron-enriched Pt nanoclusters are far more active than electron-deficient Pt single atoms for catalyzing hydrogen evolution reaction, exhibiting only 11 mV overpotential at 10 mA cm−2 and a high mass activity of 26.1 A mg−1 at 20 mV, which is 38 times greater than that of commercial Pt/C. Our work manifests that the manipulation of metal size-dependent charge transfer between metal and support opens new avenues for developing high-active catalysts.


Author(s):  
Yan nv Guo ◽  
haiyan zhu ◽  
He Zhao ◽  
Qinfu Zhao ◽  
Caihua Zhou ◽  
...  

Pd/CeO2 catalysts show superior catalytic performance owing to their optimal cycling activity and stability. In this study, single-atom Pd and eight-atoms Pd nanoparticle clusters were supported on the surface of...


2021 ◽  
Author(s):  
Jiaxu Liu ◽  
Yajun Zou ◽  
Daniel Cruz ◽  
Aleksandr Savateev ◽  
Markus Antonietti ◽  
...  

Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single-atom-dispersed photocatalysts. However, the relation of catalysts textural properties with their photophysical properties and as a result activity in photocatalytic applications is rarely elaborated. Herein we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly-dispersed Ag and Cu species on mesoporous graphitic C<sub>3</sub>N<sub>4</sub>. We show that adjustment of materials textural properties and thereby metal single atoms coordination mode enables ligand-to-metal (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), a property tha was long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutant under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the amount of toxic organic fragmentation products, while leading to a higher selectivity towards full calcination. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of the surface state of single-atom catalysts. The concepts can be exploited further to rationally design and optimize other single-atom materials.


Sign in / Sign up

Export Citation Format

Share Document