Efficient Modulation of Catalytic Performance of Electrocatalytic Nitrogen Reduction with Transition Metal Anchored N/O-codoped Graphene by Coordination Engineering

Author(s):  
Xiaolin Wang ◽  
Li-Ming Yang

We for the first time report the discovery of a series of highly efficient electrocatalysts, i.e., transition metal anchored N/O-codoped graphene, for nitrogen fixation via high-throughput screening combined with first-principles...

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 974
Author(s):  
Bing Han ◽  
Haihong Meng ◽  
Fengyu Li ◽  
Jingxiang Zhao

Under the current double challenge of energy and the environment, an effective nitrogen reduction reaction (NRR) has become a very urgent need. However, the largest production of ammonia gas today is carried out by the Haber–Bosch process, which has many disadvantages, among which energy consumption and air pollution are typical. As the best alternative procedure, electrochemistry has received extensive attention. In this paper, a catalyst loaded with Fe3 clusters on the two-dimensional material C2N (Fe3@C2N) is proposed to achieve effective electrochemical NRR, and our first-principles calculations reveal that the stable Fe3@C2N exhibits excellent catalytic performance for electrochemical nitrogen fixation with a limiting potential of 0.57 eV, while also suppressing the major competing hydrogen evolution reaction. Our findings will open a new door for the development of non-precious single-cluster catalysts for effective nitrogen reduction reactions.


2020 ◽  
Vol 8 (10) ◽  
pp. 5209-5216 ◽  
Author(s):  
Mohammad Zafari ◽  
Deepak Kumar ◽  
Muhammad Umer ◽  
Kwang S. Kim

Machine learning (ML) methods would significantly reduce the computational burden of catalysts screening for nitrogen reduction reaction (NRR).


Nanoscale ◽  
2021 ◽  
Author(s):  
Yibo Chen ◽  
Xinyu Zhang ◽  
Jiaqian Qin ◽  
Riping Liu

Developing eco-friendly and highly-efficient catalysts for electrochemical nitrogen reduction reaction (NRR) under ambient condition to replace the energy-intensive and environment-polluting Haber-Bosch process is of great significance while remaining a long...


2020 ◽  
Vol 22 (25) ◽  
pp. 13981-13988 ◽  
Author(s):  
Yao Tan ◽  
Ying Xu ◽  
Zhimin Ao

In this work, we explored the feasibility of transition metal atom embedded stanene as an effective catalyst for the nitrogen reduction reaction (NRR) based on first-principles calculations.


Nano Energy ◽  
2020 ◽  
Vol 68 ◽  
pp. 104304 ◽  
Author(s):  
Tong Yang ◽  
Ting Ting Song ◽  
Jun Zhou ◽  
Shijie Wang ◽  
Dongzhi Chi ◽  
...  

Nano Letters ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1871-1878 ◽  
Author(s):  
Xingshuai Lv ◽  
Wei Wei ◽  
Baibiao Huang ◽  
Ying Dai ◽  
Thomas Frauenheim

2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2019 ◽  
Author(s):  
Enrique Pascual-San-José ◽  
Xabier Rodríguez-Martínez ◽  
Fei Zhuping ◽  
Martin Heeney ◽  
Roger Guimerà-Manrique ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Byung Chul Yeo ◽  
Hyunji Nam ◽  
Hyobin Nam ◽  
Min-Cheol Kim ◽  
Hong Woo Lee ◽  
...  

AbstractTo accelerate the discovery of materials through computations and experiments, a well-established protocol closely bridging these methods is required. We introduce a high-throughput screening protocol for the discovery of bimetallic catalysts that replace palladium (Pd), where the similarities in the electronic density of states patterns were employed as a screening descriptor. Using first-principles calculations, we screened 4350 bimetallic alloy structures and proposed eight candidates expected to have catalytic performance comparable to that of Pd. Our experiments demonstrate that four bimetallic catalysts indeed exhibit catalytic properties comparable to those of Pd. Moreover, we discover a bimetallic (Ni-Pt) catalyst that has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides an opportunity for the catalyst discovery for the replacement or reduction in the use of the platinum-group metals.


Sign in / Sign up

Export Citation Format

Share Document