P-block tin single atom catalyst for improved electrochemistry in lithium-sulfur battery: a theoretical and experimental study

Author(s):  
Caixia Xiao ◽  
Wanqing Song ◽  
Jingzhe Liang ◽  
Jiangwei Zhang ◽  
Zechuan Huang ◽  
...  

Main group metals are routinely considered as catalytically inactive hence never employed for optimizing the lithium-sulfur electrochemistry. Herein, density function theory calculations reveal that atomically dispersed tin on nitrogen doped...

2014 ◽  
Vol 16 (38) ◽  
pp. 20561-20569 ◽  
Author(s):  
Xilin Zhang ◽  
Zhansheng Lu ◽  
Yanan Tang ◽  
Zhaoming Fu ◽  
Dongwei Ma ◽  
...  

The nitrogen doped graphene is an efficient metal-free catalyst for NO reduction by the dimer mechanism.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Madhumita Hazra ◽  
Tanushree Dolai ◽  
Akhil Pandey ◽  
Subrata Kumar Dey ◽  
Animesh Patra

The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2)HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.


2011 ◽  
Vol 221 ◽  
pp. 180-183 ◽  
Author(s):  
Jian Li ◽  
Xun Zhang Yu ◽  
Kai Zhang

The ring-opening reaction between bisphenol A and epichlorohydrin was calculated by Gaussian03. The Density Function Theory (DFT) method were employed to study the geometry structures of bisphenol A and epichlorohydrin and the product was obtained on the base of B3LYP/6-31G+ model in this paper. The transitional states (Ts1, Ts2) during the ring-opening process were found by TS method and the energy changing of the system was proved by IRC calculation. Results showed that the energy reduced by 64.37726kJ/mol during the ring-opening process. The product was confirmed to be thermodynamically stable.


2021 ◽  
Vol 91 (5) ◽  
pp. 828-834
Author(s):  
K. V. Zaitsev ◽  
A. Yu. Oprunenko ◽  
I. P. Gloriozov ◽  
M. S. Nechaev ◽  
Yu. F. Oprunenko ◽  
...  

2011 ◽  
Vol 36 (4) ◽  
pp. 323-328
Author(s):  
Yiling Bei ◽  
Qingyang Liu

The reaction of silylene with acetylene was observed by the density function theory (DFT) method at the 6 - 311 g (d,p) level. A new reaction pathway has been identified involving the tetra-conjugated: SiH2CH==CHH2Si:. Thermodynamic and kinetic analysis confirms the reaction to be spontaneous at room temperature. The new intermediate proposed in this work offers a resolution of the conundrum of the silylene/acetylene reaction.


Sign in / Sign up

Export Citation Format

Share Document