Stability of N-heterocyclic oxime derivatives. Part III. The kinetics of the hydrolysis of formyl- and acetyl-pyridine O-acetyloximes in aqueous solution in the pH range 6·0–10·8 at 25, 35, and 40°

1968 ◽  
Vol 0 (0) ◽  
pp. 167-169 ◽  
Author(s):  
J. H. Blanch
1968 ◽  
Vol 2 (9) ◽  
pp. 234-243 ◽  
Author(s):  
Inga Christenson

The products and kinetics of hydrolysis of the nerve gas antidote bis(4-hydroxyiminomethyl - 1 - pyridinemethyl) ether dichloride (Toxogonin ®) have been investigated. A survey of these studies is given: The hydrolytic reactions were studied in the pH range 1 M hydrochloric acid to 1 M sodium hydroxide at 25, 45, 75 and 85° C. Rate constants were determined in dilute aqueous solution, generally with an initial Toxogonin concentration of 0.01 mg per ml. In addition, a report is given concerning two-year storage of 25 percent (w/v) Toxogonin solutions at pH 2.5, 3.0 and 3.5. The solutions were stored in glass or polypropylene ampuls at 5, 15, 25 and 45°C. At 5 and 15C° decomposition was negligible, at 25 and 45 °C average decomposition was 1.5 percent and 3.3 percent, respectively.


1965 ◽  
Vol 18 (5) ◽  
pp. 651 ◽  
Author(s):  
RW Green ◽  
PW Alexander

The Schiff base, N-n-butylsalicylideneimine, extracts more than 99.8% beryllium into toluene from dilute aqueous solution. The distribution of beryllium has been studied in the pH range 5-13 and is discussed in terms of the several complex equilibria in aqueous solution. The stability constants of the complexes formed between beryllium and the Schiff base are log β1 11.1 and log β2 20.4, and the distribution coefficient of the bis complex is 550. Over most of the pH range, hydrolysis of the Be2+ ion competes with complex formation and provides a means of measuring the hydrolysis constants. They are for the reactions: Be(H2O)42+ ↔ 2H+ + Be(H2O)2(OH)2, log*β2 - 13.65; Be(H2O)42+ ↔ 3H+ + Be(H2O)(OH)3-, log*β3 -24.11.


1982 ◽  
Vol 35 (7) ◽  
pp. 1357 ◽  
Author(s):  
TJ Broxton

The hydrolysis of 2-acetyloxybenzoic acid in the pH range 6-12 has been studied in the presence of micelles of cetyltrimethylammonium bromide (ctab) and cetylpyridinium chloride (cpc). In the plateau region (pH 6-8) the hydrolysis is inhibited by the presence of micelles, while in the region where the normal BAC2 hydrolysis (pH > 9) occurs the reaction is catalysed by micelles of ctab and cpc. The mechanism of hydrolysis in the plateau region is shown to involve general base catalysis by the adjacent ionized carboxy group both in the presence and absence of micelles. This reaction is inhibited in the presence of micelles because the substrate molecules are solubilized into the micelle and water is less available in this environment than in normal aqueous solution.


2013 ◽  
Vol 67 (4) ◽  
Author(s):  
Ahmad Mohamad ◽  
Mohamed Adam

AbstractThree ligands of 2-pyridinylmethylene-8-quinolinyl (L1), methyl-2-pyridinylmethylene-8-quinolinyl (L2), and phenyl-2-pyridinylmethylene-8-quinolinyl (L3), Schiff bases were synthesised by direct condensation of 8-aminoquinoline with 2-pyridinecarboxaldehyde, 2-acetylpyridine, or 2-benzoylpyridine. They coordinated to Fe(II) ion in a 1: 2 mole ratio followed by treatment with iodide ions affording complexes with a general formula [Fe(L)2]I2·2H2O, (L = L1, L2, or L3). Spectrophotometric evaluation of the kinetics of base catalysed hydrolysis of these complex cations was carried out with an aqueous solution of NaOH in different ratios of water/methanol binary mixtures. Kinetics of the hydrolysis followed the rate law (k 2[OH−] + k 3[OH−]2)[complex]. Reactivity trends and their rate constants were compared and discussed in terms of ligand structure and solvation parameters. The methanol ratio affects the hydrolysis as a co-solvent which was analysed into initial and transition state components. The increase in the rate constant of the base hydrolysis of Fe(II) complexes, as the ratio of methanol increases, is predominantly caused by the strong effect of the organic co-solvent on the transition states.


1968 ◽  
Vol 21 (7) ◽  
pp. 1727
Author(s):  
RA Fredlein ◽  
I Lauder

The kinetics of the acid-catalysed hydrolysis of a-methylallyl acetate in aqueous solution have been studied over the range 30-100�. Oxygen-18 tracer experiments reveal the mechanism to be solely Aac2 and the Arrhenius parameters are consistent with this conclusion. Crotyl alcohol is observed in the reaction products. The formation of rearranged alcohol is explained by allylic isomerization of the α-methylallyl alcohol produced by the hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document