Conductance titrations in dilute oleum and the dissociation constant of disulphuric acid in solvent sulphuric acid

1966 ◽  
Vol 62 ◽  
pp. 3201 ◽  
Author(s):  
G. A. Mountford ◽  
P. A. H. Wyatt
2021 ◽  
Author(s):  
◽  
Edward Kazimierz Mroczek

<p>A high temperature hydrogen electrode concentration cell based on a design published by Macdonald, Butler and Owen1, was constructed and used to study the following protolytic equilibria. Thermodynamic equilibrium constants were derived by the usual method of extrapolation to zero ionic strength. 1. The ionization of water at temperatures from 75 to 225 degrees C in 0.1, 0.3, 0.5 and 1.0 mol kg-1 KCl solution. pK degrees w = 7229.701 /T + 30.285logT - 85.007 2. The pH calibration of 0.01 and 0.05 mol kg-1 sodium tetraborate at temperatures from 75 to 250 degrees C in O.1, 0.3 and 0.5 mol kg-1 NaCl solution. 0.0l mol kg-1 Sodium Tetraborate Solution pH = -0.4830t1 + 5.5692t2 + 7.7167t3 + 8.6983 0.05 mol kg-1 Sodium Tetraborate Solution pH = -0.0455tl + 8.3987t2 + O.2123t3 8.8156 3. The second dissociation of sulphuric acid at temperatures from 75 to 225 degree C in 0.1, 0.3 and 0.5 mol kg-l KCl solution. pK degrees 2 = 5.3353t1 - 15.9518t2 - 111.4929t3 + 3.8458 pK degrees 2 = 6.1815t*1 + 12.7301t*2. + 3.0660 (up to 150 degrees C) Where the t1 to t3= and t*1 and t*2 are the Clark-Glew temperature variable terms at reference temperatures of 423.15 and 373.15 K respectively2. 4. The acid hydrolysis of K-feldspar to K-mica and quartz at a temperature of 225 degrees C. The determination of the hydrolysis equilibrium constant was limited to one temperature because of the very slow reaction rate at temperatures less than 300 degrees C. log(mK+/mH+) = 4.2 (at 225 degrees C) Where a comparison could be made, the results of this study agreed well with previously published work, with the exception of the second dissociation constant of sulphuric acid at temperatures above 150 degrees C. Accurate values for the molal dissociation constant of the KSO-4 ion pair are required at elevated temperatures before the pK degrees 2 results can be fully evaluated. This research was severely restricted by the unpredictable loss of electrical continuity between the two cell compartments at temperatures above 150 degrees C. The problem appeared to be associated with the non-wettability of the porous Teflon plug which formed the liquid junction.</p>


1961 ◽  
Vol 39 (6) ◽  
pp. 1266-1273 ◽  
Author(s):  
J. Barr ◽  
R. J. Gillespie ◽  
E. A. Robinson

Conductivity measurements have been made on solutions of the following substances in sulphuric acid: HClO4, HSO3F, HSO3Cl, HPO2F2, HAs(HSO4)4, CH3SO3H, and CF3CO2H. Of these substances HSO3F, HSO3Cl, HAs(HSO4)4, and probably HClO4, behave as acids, CF3CO2H is a non-electrolyte, and HPO2F2, and probably CH3SO3H, are bases of the sulphuric acid system. Acid dissociation constants for HSO3F, HSO3Cl, and HAs(HSO4)4 have been determined by comparing the conductivities of their solutions with those of H2S2O7, whose dissociation constant is known from other measurements, and also by conductimetric titration with a strong base, e.g. KHSO4. These acids of the sulphuric acid system decrease in strength in the order HSO3F > HAs(HSO4)4 > HSO3Cl > HClO4.


The conductivity of lanthanum ferricyanide in water has been measured at 18, 25 and 30° C. In dilute solutions the salt shows the behaviour of a comparatively weak electrolyte, and when the limiting Debye-Huckel and Onsager equations are applied to thirty measurements at ionic strengths lower than 0·002, a constant value K = 1·82 x 10 -4 is found for its dissociation constant at 25° C. The dissociation constants at 18 and 30° C have also been calculated, and hence ∆ H , ∆ G and ∆ S for dissociation. At the higher concentrations the conductivity curve shows abnormalities which find a reasonable explanation in the theory that the degree of dissociation falls to a minimum value of approximately 0.5, and increases again at higher concentrations. The composition of the hydrate stable at room temperature is found to be LaFe(CN) 6 ,5H 2 O. One molecule of water is readily lost over concentrated sulphuric acid, and this may account for the lower degrees of hydration reported in the literature.


2021 ◽  
Author(s):  
◽  
Edward Kazimierz Mroczek

<p>A high temperature hydrogen electrode concentration cell based on a design published by Macdonald, Butler and Owen1, was constructed and used to study the following protolytic equilibria. Thermodynamic equilibrium constants were derived by the usual method of extrapolation to zero ionic strength. 1. The ionization of water at temperatures from 75 to 225 degrees C in 0.1, 0.3, 0.5 and 1.0 mol kg-1 KCl solution. pK degrees w = 7229.701 /T + 30.285logT - 85.007 2. The pH calibration of 0.01 and 0.05 mol kg-1 sodium tetraborate at temperatures from 75 to 250 degrees C in O.1, 0.3 and 0.5 mol kg-1 NaCl solution. 0.0l mol kg-1 Sodium Tetraborate Solution pH = -0.4830t1 + 5.5692t2 + 7.7167t3 + 8.6983 0.05 mol kg-1 Sodium Tetraborate Solution pH = -0.0455tl + 8.3987t2 + O.2123t3 8.8156 3. The second dissociation of sulphuric acid at temperatures from 75 to 225 degree C in 0.1, 0.3 and 0.5 mol kg-l KCl solution. pK degrees 2 = 5.3353t1 - 15.9518t2 - 111.4929t3 + 3.8458 pK degrees 2 = 6.1815t*1 + 12.7301t*2. + 3.0660 (up to 150 degrees C) Where the t1 to t3= and t*1 and t*2 are the Clark-Glew temperature variable terms at reference temperatures of 423.15 and 373.15 K respectively2. 4. The acid hydrolysis of K-feldspar to K-mica and quartz at a temperature of 225 degrees C. The determination of the hydrolysis equilibrium constant was limited to one temperature because of the very slow reaction rate at temperatures less than 300 degrees C. log(mK+/mH+) = 4.2 (at 225 degrees C) Where a comparison could be made, the results of this study agreed well with previously published work, with the exception of the second dissociation constant of sulphuric acid at temperatures above 150 degrees C. Accurate values for the molal dissociation constant of the KSO-4 ion pair are required at elevated temperatures before the pK degrees 2 results can be fully evaluated. This research was severely restricted by the unpredictable loss of electrical continuity between the two cell compartments at temperatures above 150 degrees C. The problem appeared to be associated with the non-wettability of the porous Teflon plug which formed the liquid junction.</p>


Author(s):  
R. L. Lyles ◽  
S. J. Rothman ◽  
W. Jäger

Standard techniques of electropolishing silver and silver alloys for electron microscopy in most instances have relied on various CN recipes. These methods have been characteristically unsatisfactory due to difficulties in obtaining large electron transparent areas, reproducible results, adequate solution lifetimes, and contamination free sample surfaces. In addition, there are the inherent health hazards associated with the use of CN solutions. Various attempts to develop noncyanic methods of electropolishing specimens for electron microscopy have not been successful in that the specimen quality problems encountered with the CN solutions have also existed in the previously proposed non-cyanic methods.The technique we describe allows us to jet polish high quality silver and silver alloy microscope specimens with consistant reproducibility and without the use of CN salts.The solution is similar to that suggested by Myschoyaev et al. It consists, in order of mixing, 115ml glacial actic acid (CH3CO2H, specific wt 1.04 g/ml), 43ml sulphuric acid (H2SO4, specific wt. g/ml), 350 ml anhydrous methyl alcohol, and 77 g thiourea (NH2CSNH2).


1887 ◽  
Vol 23 (587supp) ◽  
pp. 9378-9378
Author(s):  
H. Sprengel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document