scholarly journals Scutellarin inhibits the uninduced and metal-induced aggregation of α-Synuclein and disaggregates preformed fibrils: implications for Parkinson's disease

2020 ◽  
Vol 477 (3) ◽  
pp. 645-670 ◽  
Author(s):  
Fatima Kamal Zaidi ◽  
Shashank Deep

The aggregation of the protein alpha synuclein (α-Syn), a known contributor in Parkinson's disease (PD) pathogenesis is triggered by transition metal ions through occupational exposure and disrupted metal ion homeostasis. Naturally occurring small molecules such as polyphenols have emerged as promising inhibitors of α-Syn fibrillation and toxicity and could be potential therapeutic agents against PD. Here, using an array of biophysical tools combined with cellular assays, we demonstrate that the novel polyphenolic compound scutellarin efficiently inhibits the uninduced and metal-induced fibrillation of α-Syn by acting at the nucleation stage and stabilizes a partially folded intermediate of α-Syn to form SDS-resistant, higher-order oligomers (∼680 kDa) and also disaggregates preformed fibrils of α-Syn into similar type of higher-order oligomers. ANS binding assay, fluorescence lifetime measurements and cell-toxicity experiments reveal scutellarin-generated oligomers as compact, low hydrophobicity structures with modulated surface properties and significantly reduced cytotoxicity than the fibrillation intermediates of α-Syn control. Fluorescence spectroscopy and isothermal titration calorimetry establish the binding between scutellarin and α-Syn to be non-covalent in nature and of moderate affinity (Ka ∼ 105 M−1). Molecular docking approaches suggest binding of scutellarin to the residues present in the NAC region and C-terminus of monomeric α-Syn and the C-terminal residues of fibrillar α-Syn, demonstrating inhibition of fibrillation upon binding to these residues and possible stabilization of the autoinhibitory conformation of α-Syn. These findings reveal interesting insights into the mechanism of scutellarin action and establish it as an efficient modulator of uninduced as well as metal-induced α-Syn fibrillation and toxicity.

2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Nagare Santosh Gangadhar ◽  

Parkinson's disease (PD) is the 2nd most common progressive neurodegenerative disorder after Alzheimer's disease. Approximately 60000 are diagnosed with Parkinson's disease each year and more than 10 million people are living with PD. PD is a neurodegenerative disorder in addition to the causes of PD are so many, it's not caused by a single pathophysiologic disturbance. So many drugs are available to treat PD but all are only for symptomatic relief no one drug is a disease-modifying agent. Although so many targets are available for targeting the Synuclein alpha, mitochondrial oxidative stress, autophagy, targeting glial cell inflammation, targeting metal ion homeostasis. But till now no one drug is successful in targeting these targets. In this review, we have summarized the genetic basis and novel targets available for the disease-modifying strategy for PD.


Author(s):  
Jannik Prasuhn ◽  
Ryan L. Davis ◽  
Kishore R. Kumar

The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.


Author(s):  
Sijia Yin ◽  
Chao Han ◽  
Yun Xia ◽  
Fang Wan ◽  
Junjie Hu ◽  
...  

AbstractParkinson’s disease (PD) is an incurable neurodegenerative disease characterized by aggregation of pathological alpha-synuclein (α-syn) and loss of dopaminergic neuron in the substantia nigra. Inhibition of phosphorylation of the α-syn has been shown to mediate alleviation of PD-related pathology. Protein phosphatase 2A (PP2A), an important serine/threonine phosphatase, plays an essential role in catalyzing dephosphorylation of the α-syn. Here, we identified and validated cancerous inhibitor of PP2A (CIP2A), as a potential diagnostic biomarker for PD. Our data showed that plasma CIP2A concentrations in PD patients were significantly lower compared to age- and sex-matched controls, 1.721 (1.435–2.428) ng/ml vs 3.051(2.36–5.475) ng/ml, p < 0.0001. The area under the curve of the plasma CIP2A in distinguishing PD from the age- and sex-matched controls was 0.776. In addition, we evaluated the role of CIP2A in PD-related pathogenesis in PD cellular and MPTP-induced mouse model. The results demonstrated that CIP2A is upregulated in PD cellular and MPTP-induced mouse models. Besides, suppression of the CIP2A expression alleviates rotenone induced aggregation of the α-syn as well as phosphorylation of the α-syn in SH-SY5Y cells, which is associated with increased PP2A activity. Taken together, our data demonstrated that CIP2A plays an essential role in the mechanisms related to PD development and might be a novel PD biomarker.


2019 ◽  
Vol 47 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Stephanie L. Begg

AbstractMetal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.


Sign in / Sign up

Export Citation Format

Share Document