The role of metal ions in the virulence and viability of bacterial pathogens

2019 ◽  
Vol 47 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Stephanie L. Begg

AbstractMetal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yulia Sokurenko ◽  
Vera Ulyanova ◽  
Pavel Zelenikhin ◽  
Alexey Kolpakov ◽  
Dmitriy Blokhin ◽  
...  

Extracellular enzymes of intestinal microbiota are the key agents that affect functional activity of the body as they directly interact with epithelial and immune cells. Several species of theBacillusgenus, likeBacillus pumilus, a common producer of extracellular RNase binase, can populate the intestinal microbiome as a colonizing organism. Without involving metal ions as cofactors, binase depolymerizes RNA by cleaving the 3′,5′-phosphodiester bond and generates 2′,3′-cyclic guanosine phosphates in the first stage of a catalytic reaction. Maintained in the reaction mixture for more than one hour, such messengers can affect the human intestinal microflora and the human body. In the present study, we found that the rate of 2′,3′-cGMP was growing in the presence of transition metals that stabilized the RNA structure. At the same time, transition metal ions only marginally reduced the amount of 2′,3′-cGMP, blocking binase recognition sites of guanine at N7 of nucleophilic purine bases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rute Oliveira ◽  
Matthew J. Bush ◽  
Sílvia Pires ◽  
Govind Chandra ◽  
Delia Casas-Pastor ◽  
...  

AbstractExtracytoplasmic function (ECF) sigma factors are key transcriptional regulators that prokaryotes have evolved to respond to environmental challenges. Streptomyces tsukubaensis harbours 42 ECFs to reprogram stress-responsive gene expression. Among them, SigG1 features a minimal conserved ECF σ2–σ4 architecture and an additional C-terminal extension that encodes a SnoaL_2 domain, which is characteristic for ECF σ factors of group ECF56. Although proteins with such domain organisation are widely found among Actinobacteria, the functional role of ECFs with a fused SnoaL_2 domain remains unknown. Our results show that in addition to predicted self-regulatory intramolecular amino acid interactions between the SnoaL_2 domain and the ECF core, SigG1 activity is controlled by the cognate anti-sigma protein RsfG, encoded by a co-transcribed sigG1-neighbouring gene. Characterisation of ∆sigG1 and ∆rsfG strains combined with RNA-seq and ChIP-seq experiments, suggests the involvement of SigG1 in the morphological differentiation programme of S. tsukubaensis. SigG1 regulates the expression of alanine dehydrogenase, ald and the WhiB-like regulator, wblC required for differentiation, in addition to iron and copper trafficking systems. Overall, our work establishes a model in which the activity of a σ factor of group ECF56, regulates morphogenesis and metal-ions homeostasis during development to ensure the timely progression of multicellular differentiation.


2006 ◽  
Vol 1 ◽  
pp. 117727190600100 ◽  
Author(s):  
Allan Evald Nielsen ◽  
Adam Bohr ◽  
Milena Penkowa

Metallothionein (MT) is a highly conserved, low-molecular-weight, cysteine-rich protein that occurs in 4 isoforms (MT-I to MT-IV), of which MT-I+II are the major and best characterized proteins. This review will focus on mammalian MT-I+II and their functional impact upon cellular survival and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated with poor tumor prognosis, although the data are less clear and direct causative roles of MT-I+II in oncogenesis remain to be identified. The MT-I+II molecular mechanisms of actions are not fully elucidated. However, their role in metal ion homeostasis might be fundamental in controlling Zn-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state. Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused.


2006 ◽  
Vol 141 (4) ◽  
pp. 1446-1458 ◽  
Author(s):  
Brian M. Waters ◽  
Heng-Hsuan Chu ◽  
Raymond J. DiDonato ◽  
Louis A. Roberts ◽  
Robynn B. Eisley ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 492 ◽  
Author(s):  
Helmut Bischof ◽  
Sandra Burgstaller ◽  
Markus Waldeck-Weiermair ◽  
Thomas Rauter ◽  
Maximilian Schinagl ◽  
...  

Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.


2004 ◽  
Vol 25 ◽  
pp. S483
Author(s):  
Carina Treiber ◽  
Andreas Simons ◽  
Gerd Multhaup

2011 ◽  
Vol 61 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Ana Budimir

Metal ions, Alzheimer's disease and chelation therapyIn the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases.


2021 ◽  
Vol 55 (S3) ◽  
pp. 65-86

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


Author(s):  
Mazen Hamed

Ferric uptake regulation protein is a repressor protein which binds an AT rich region of DNA (the iron box). Fur binds as a dimer in a helix turn helix mode and it is activated by iron(II) and other transition metal ions at elevated concentrations. Each transition metal ion induces certain conformational changes to aid the Fur binding, both the N-terminal and C-terminal domains take part in binding to DNA in addition to His 88 and His 86. The process is discussed in view of experimental reports. Fe(II), Mn(II) and Co(II) activate Fur to bind DNA but Zinc plays a structural role and does not activate Fur to bind DNA.


Sign in / Sign up

Export Citation Format

Share Document