scholarly journals Amino acid utilization in bacterial growth. 2. A study of threonine-isoleucine relationships in mutants of Escherichia coli

1954 ◽  
Vol 57 (2) ◽  
pp. 338-343 ◽  
Author(s):  
H. Amos ◽  
G. N. Cohen
2007 ◽  
Vol 189 (15) ◽  
pp. 5429-5440 ◽  
Author(s):  
Christine A. White-Ziegler ◽  
Amy J. Malhowski ◽  
Sarah Young

ABSTRACT Using DNA microarrays, we identified 126 genes in Escherichia coli K-12 whose expression is increased at human body temperature (37°C) compared to growth at 23°C. Genes involved in the uptake and utilization of amino acids, carbohydrates, and iron dominated the list, supporting a model in which temperature serves as a host cue to increase expression of bacterial genes needed for growth. Using quantitative real-time PCR, we investigated the thermoregulatory response for representative genes in each of these three categories (hisJ, cysP, srlE, garP, fes, and cirA), along with the fimbrial gene papB. Increased expression at 37°C compared to 23°C was retained in both exponential and stationary phases for all of the genes and in most of the various media tested, supporting the relative importance of this cue in adapting to changing environments. Because iron acquisition is important for both growth and virulence, we analyzed the regulation of the iron utilization genes cirA and fes and found that growth in iron-depleted medium abrogated the thermoregulatory effect, with high-level expression at both temperatures, contrasting with papB thermoregulation, which was not greatly altered by limiting iron levels. A positive role for the environmental regulator H-NS was found for fes, cirA, hisJ, and srlE transcription, whereas it had a primarily negative effect on cysP and garP expression. Together, these studies indicate that temperature is a broadly used cue for regulating gene expression in E. coli and that H-NS regulates iron, carbohydrate, and amino acid utilization gene expression.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Toyotaka Sato ◽  
Tsukasa Shiraishi ◽  
Yoshiki Hiyama ◽  
Hiroyuki Honda ◽  
Masaaki Shinagawa ◽  
...  

ABSTRACT Colistin is a last-line drug for multidrug-resistant Gram-negative bacteria. We previously reported four plasmid-mediated colistin resistance (mcr) gene-negative colistin-resistant Escherichia coli clinical isolates, including the major pathogenic and fluoroquinolone-resistant strains O25b:H4-ST131-H30Rx (isolates SRE34 and SRE44; MIC for colistin = 16 mg/liter), non-x (SME296; MIC = 8 mg/liter), and O18-ST416 (SME222; MIC = 4 mg/liter). In this study, we investigated the colistin resistance mechanism and identified novel amino acid substitutions or deletions in the PmrAB two-component system that activates eptA (encoding a phosphoethanolamine transferase) and arnT (encoding an undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase) in all colistin-resistant isolates. SRE34 possessed deletion Δ27–45 (LISVFWLWHESTEQIQLFE) in PmrB, SRE44 possessed substitution L105P in PmrA, and both SME222 and SME296 included substitution G206D in PmrB. Matrix-assisted laser desorption ionization–time of flight mass spectrometry revealed that lipid A is modified with phosphoethanolamine in all four isolates. Deletion of pmrAB decreased colistin MICs to 0.5 mg/liter and lowered eptA and arnT expression. Chromosomal replacement of mutated pmrA or pmrB in colistin-susceptible O25b:H4-ST131 strain SME98 (colistin MIC = 0.5 mg/liter) increased the colistin MIC to that of the respective parent colistin-resistant isolate. In addition, SME98 mutants in which pmrAB was replaced with mutated pmrAB showed no significant differences in bacterial growth and competition culture from the parent strain, except for the mutant with L105P in PmrA, whose growth was significantly suppressed in the presence of the parent strain. In conclusion, some O25b:H4-ST131 strains appear to acquire colistin resistance via phosphoethanolamine modification of lipid A through amino acid changes in PmrAB, and the amino acid changes in PmrB do not influence bacterial growth.


Author(s):  
Sabreen A Kamal ◽  
Ishraq A Salih ◽  
Hawraa Jawad Kadhim ◽  
Zainab A Tolaifeh

Red rose or roselle (beauty rose ) is natively known as red tea belong to Malvaceae, it is flowers use traditionally for antihypertensive hepato protective, anticancer,antidiabetic,antibacterial, cytotoxicity and antidiarreal, By preparing red tea from it's flower. In this study, we extract chemical compounds by using two solvent which are Ethanol, Ethyl acetate. so we can extract Anthocyanin which is responsible for red colour of flower with many chemical compounds. then study the effect of these extracts on 5 genera from Enterobacteriacaea which can cause diarrheae (Shigella, Salmonella, Escherichia coli, Proteus and Klebsiella ) by preparing 3 concentrations for each solvent (250, 500, 750 ) mg/ml, and control then compare with two antibiotic (Azereonam 30 mg/ml and Bacitracin 10 mg/ml ) these extracts revealed obvious inhibition zone in bacterial growth.


2019 ◽  
Vol 4 (1) ◽  
pp. 15
Author(s):  
Ariyetti Ariyetti ◽  
Muhammad Nasir ◽  
Safni Safni ◽  
Syukri Darajat

<p><em>Metil merah merupakan salah satu zat warna golongan azo yang sering digunakan dalam industri dan laboratorium. Penggunaan metil merah dapat menimbulkan efek terhadap kesehatan dan lingkungan. Oleh sebab itu dilakukan metode fotodegradasi dengan menggunakan semikonduktor dan radiasi sinar tampak. Semikonduktor yang digunakan yaitu berbahan dasar tembaga sulfat hidrat dan perak nitrat. Prekusor tembaga sulfat hidrat dibuat dari pengolahan limbah logam tembaga hasil pemotongan tembaga yang ada di bengkel Lembaga Ilmu Pengetahuan Indonesia (LIPI) Bandung. Bahan semikonduktor juga memiliki kemampuan dalam menghambat pertumbuhan bakteri. Hasil optimum yang didapatkan dalam proses fotodegradasi dan antibakteri merupakan gabungan antara kedua prekusor tembaga sulfat hidrat dan perak nitrat dengan bantuan penyinaran. Kemampuan dalam menghambat pertumbuhan bakteri didapatkan persentase kematian 100 % untuk masing-masing bakteri, yaitu Escherichia coli dan Staphylococcus aureus. Aktifitas fotokatalitiknya dengan konsentrasi semikonduktor 10 ppm untuk mendegradasi zat warna metil merah 5 ppm, selama 23 jam, dimana persentase degradasi yang didapatkan dengan penyinaran lebih tinggi dibandingkan dengan tanpa penyinaran. Pengaruh pH larutan terhadap degradasi metil merah yaitu optimum pada pH 12 (basa).</em></p><p><em><br /></em></p><p><em>Methyl red is one of the azo group dyes that is often used in industry and laboratories. The use of methyl red can have an effect on health and the environment. Therefore photodegradation method is done by using semiconductor and visible light radiation. The semiconductor used is based on copper sulfate hydrate and silver nitrate. The copper sulphate hydrate precursor is made from the processing of copper-cut copper metal waste in the workshop of the Indonesian Institute of Sciences (LIPI) in Bandung. Semiconductor materials also have the ability to inhibit bacterial growth. The optimum results obtained in the photodegradation and antibacterial process are a combination of both copper sulfate hydrate precursor and silver nitrate with the help of irradiation. The ability to inhibit bacterial growth obtained 100% mortality for each bacterium, namely Escherichia coli and Staphylococcus aureus. Photocatalytic activity with 10 ppm semiconductor concentration to degrade methyl red dye 5 ppm, for 23 hours, where the percentage of degradation obtained by irradiation is higher than without irradiation. The effect of pH of the solution on the degradation of methyl red is optimum at pH 12 (base).</em></p>


Sign in / Sign up

Export Citation Format

Share Document