scholarly journals Mitochondrial development in liver of foetal and newborn rats

1971 ◽  
Vol 121 (2) ◽  
pp. 341-347 ◽  
Author(s):  
S. Jakovcic ◽  
J. Haddock ◽  
G. S. Getz ◽  
M. Rabinowitz ◽  
H. Swift

The development of the inner mitochondrial membrane in foetal and neonatal rat liver was studied by following three parameters: (1) the activity of several respiratory enzymes in homogenates and purified mitochondria, (2) the spectrophotometric determination of cytochrome content in the mitochondria and (3) the cardiolipin content in both homogenates and purified mitochondria. Respiratory-enzyme activities of homogenates of foetal liver were one-quarter to one-twentieth of those of homogenates of adult liver, and the enzyme specific activities in purified mitochondria from foetal liver were one-half to one-eighth of those in mitochondria from adult liver. The cardiolipin content of liver homogenates increased approximately twofold during the development period, but there was no significant change in the cardiolipin content of purified mitochondria. It is concluded that cell mitochondrial content approximately doubles in the immediate postnatal period. There was no evidence for an increase in the relative amount of cristae protein in mitochondria during this period to account for increases in mitochondrial enzyme specific activity, since cardiolipin and cytochrome concentrations remained unchanged and electron micrographs revealed no differences. The cause of the lower respiratory-enzyme specific activity in foetal liver mitochondria is unclear. Qualitative differences in respiratory units in foetal and mature animals are suggested.

1975 ◽  
Vol 150 (3) ◽  
pp. 477-488 ◽  
Author(s):  
J K Pollak

A new method was devised for the isolation of foetal and neonatal rat lvier mitochondria, giving higher yields than conventional methods. 2. During development from the perinatal period to the mature adult, the ratio of cytochrome oxidase/succinate-cytochrome c reductase changes. 3. The inner mitochondrial membrane of foetal liver mitochondria possesses virtually no osmotic activity; the permeability to sucrose decreases with increasing developmental age. 4. Foetal rat liver mitochondria possess only marginal respiratory control and do not maintain Ca2+-induced respiration; they also swell in respiratory-control medium in the absence of substrate. ATP enhances respiratory control and prevents swelling, adenylyl imidodiphosphate, ATP+atractyloside enhance the R.C.I. (respiratory control index), Ca2+-induced respiratory control and prevent swelling, whereas GTP and low concentrations of ADP have none of these actions. It is concluded that the effect of ATP depends on steric interaction with the inner mitochondrial membrane. 5. When 1-day pre-partum foetuses are obtained by Caesarean section and maintained in a Humidicrib for 90 min, mitochondrial maturation is ‘triggered’, so that their R.C.I. is enhanced and no ATP is required to support Ca2+-dependent respiratory control or to inhibit mitochondrial swelling. 6. It is concluded that foetal rat liver mitochondria in utero do not respire, although they are capable of oxidative phosphorylation in spite of their low R.C.I. The different environmental conditions which the neonatal rat encounters ex utero enable the hepatic mitochondria to produce ATP, which interacts with the inner mitochondrial membrane to enhance oxidative phosphorylation by an autocatalytic mechanism.


1970 ◽  
Vol 119 (3) ◽  
pp. 547-552 ◽  
Author(s):  
D. W. Yates ◽  
P. B. Garland

1. A continuously recording and sensitive fluorimetric assay is described for carnitine palmitoyltransferase. This assay has been applied to whole or disintegrated mitochondria and to soluble protein fractions. 2. When rat liver mitochondria had been disintegrated by ultrasound, the specific activity of carnitine palmitoyltransferase was 15–20m-units/mg of protein. Only one-fifth of this activity was assayable (with added substrates) before mitochondrial disintegration. 3. It is concluded that there are two carnitine palmitoyltransferase activities in rat liver mitochondria, of which one (type I) is relatively superficial in location and catalyses an acyl-group transfer between added CoA and carnitine, whereas the other (type II) is less superficial and catalyses an acyl-group transfer in unbroken mitochondria between added carnitine and intramitochondrial CoA. The existence of two distinct carnitine palmitoyltransferases was predicted by Fritz & Yue (1963). 4. In unbroken mitochondria, type I transferase is accessible to the inhibitor 2-bromostearoyl-CoA whereas the type II transferase is inaccessible. 5. A major part of the total carnitine palmitoyltransferase activity of rat liver mitochondria is membrane-bound and of type II. 6. These observations, when considered in conjunction with the penetration of mitochondria by CoASH or carnitine, indicate that the type II transferase is attached to the inner mitochondrial membrane.


1994 ◽  
Vol 303 (3) ◽  
pp. 855-862 ◽  
Author(s):  
C Valcarce ◽  
J M Izquierdo ◽  
M Chamorro ◽  
J M Cuezva

In this paper we report that, compared with term rat neonates, both mitochondrial content and function are diminished in liver of preterm neonates (delivered 24 h before full term) compromising cellular energy provision in the postnatal period. In addition, there is a parallel reduction in the content of mRNAs encoding mitochondrial proteins in preterm rats. Also, efficient oxidative phosphorylation is not attained in these pups until 3 h after birth. Although isolated liver mitochondria from preterm neonates show a two-fold increase in F1-ATPase beta-subunit and cytochrome c oxidase activity 1 h after birth, the abnormal coupling efficiency between respiration and oxidative phosphorylation (ADP/O ratio) is due to maintenance of high H(+)-leakage values in the inner mitochondrial membrane. Postnatal reduction of the H+ leak occurs concomitantly with an increase in intra-mitochondrial adenine nucleotide concentration. Accumulation of adenine nucleotides in preterm and term liver mitochondria parallels the postnatal increase in total liver adenine nucleotides. Delayed postnatal induction of adenine biosynthesis most likely accounts for the lower adenine nucleotide pool in the liver of preterm neonates. The delayed postnatal accumulation of adenine nucleotides in mitochondria is thus responsible for the impairment in oxidative phosphorylation displayed by organelles of the preterm liver.


1977 ◽  
Vol 32 (9-10) ◽  
pp. 786-791 ◽  
Author(s):  
Josef Köhrle ◽  
Joachim Lüstorff ◽  
Eckhard Schlimme

Abstract 1. P1, P5-Bis-(5′-adenosyl)pentaphosphate (Ap5A) inhibits “soluble” adenylate kinase even when this enzyme is an integral part of the complete mitochondrion. The Ki is 10-5м , i. e. about two orders of magnitude higher than the inhibitor constants determined for the purified adenylate kinase of rabbit muscle and an enzyme preparation separated from the mitochondrial intermembrane space. The weaker inhibitory effect is due to a lower accessibility of the enzyme.2. As to be expected Ap5A which is of the “multisubstrate analogue”-type does not affect mito­ chondrial nucleoside diphosphate kinase.3. Though Ap5A owns the structural elements of both ATP and ADP it is not a substrate of the adenine nucleotide carrier, i.e. neither it is exchanged across the inner mitochondrial membrane nor specifically bound.4. Ap5A is not metabolized by rat liver mitochondria.


1990 ◽  
Vol 267 (1) ◽  
pp. 85-90 ◽  
Author(s):  
M P Kolodziej ◽  
V A Zammit

1. The interaction of malonyl-CoA with the outer carnitine palmitoyltransferase (CPT) system of rat liver mitochondria was re-evaluated by using preparations of highly purified outer membranes, in the light of observations that other subcellular structures that normally contaminate crude mitochondrial preparations also contain malonyl-CoA-sensitive CPT activity. 2. In outer-membrane preparations, which were purified about 200-fold with respect to the inner-membrane-matrix fraction, malonyl-CoA binding was largely accounted for by a single high-affinity component (KD = 0.03 microM), in contrast with the dual site (low- and high-affinity) previously found with intact mitochondria. 3. There was no evidence that the decreased sensitivity of CPT to malonyl-CoA inhibition observed in outer membranes obtained from 48 h-starved rats (compared with those from fed animals) was due to a decreased ratio of malonyl-CoA binding to CPT catalytic moieties. Thus CPT specific activity and maximal high-affinity [14C]malonyl-CoA binding (expressed per mg of protein) were increased 2.2- and 2.0-fold respectively in outer membranes from 48 h-starved rats. 4. Palmitoyl-CoA at a concentration that was saturating for CPT activity (5 microM) decreased the affinity of malonyl-CoA binding by an order of magnitude, but did not alter the maximal binding of [14C]malonyl-CoA. 5. Preincubation of membranes with either tetradecylglycidyl-CoA or 2-bromopalmitoyl-CoA plus carnitine resulted in marked (greater than 80%) inhibition of high-affinity binding, concurrently with greater than 95% inhibition of CPT activity. These treatments also unmasked an effect of subsequent treatment with palmitoyl-CoA to increase low-affinity [14C]malonyl-CoA binding. 6. These data are discussed in relation to the possible mechanism of interaction between the malonyl-CoA-binding site and the active site of the enzyme.


1980 ◽  
Vol 188 (2) ◽  
pp. 329-335 ◽  
Author(s):  
M E Koller ◽  
I Romslo

Rat liver mitochondria accumulate protoporphyrin IX from the suspending medium into the inner membrane in parallel with the magnitude of the transmembrane K+ gradient (K+in/K+out). Only protoporphyrin IX taken up in parallel with the transmembrane K+ gradient is available for haem synthesis. Coproporphyrins (isomers I and III) are not taken up by the mitochondria. The results support the suggestion by Elder & Evans [(1978) Biochem. J. 172, 345-347] that the prophyrin to be taken up by the inner mitochondrial membrane belongs to the protoporphyrin(ogen) IX series. Protoporphyrin IX at concentrations above 15 nmol/mg of protein has detrimental effects on the structural and functional integrity of the mitochondria. The relevance of these effects to the hepatic lesion in erythropoietic protoporphyria is discussed.


1979 ◽  
Vol 182 (2) ◽  
pp. 367-370 ◽  
Author(s):  
W A Maltese ◽  
J J Volpe

The specific activity of 3-hydroxy-3-methylglutaryl-CoA reductase increases when homogenates of developing rat brain are incubated at 37 degrees C or kept on ice. This increase is completely blocked by the addition of F- to the homogenization medium and the assay mixture. The capacity for activation of the reductase is greatest during the early postnatal period and declines as brain maturation proceeds. The data suggest that catalytic modification of the reductase may play a role in the regulation of cholesterol synthesis in the developing brain.


1997 ◽  
Vol 154 (1) ◽  
pp. 119-124
Author(s):  
A Lombardi ◽  
M Moreno ◽  
C Horst ◽  
F Goglia ◽  
A Lanni

Abstract The binding of labelled 3,3′-di-iodo-l-thyronine (3,3′-T2) to isolated rat liver mitochondria has been characterized. Specific binding could be detected only in the inner mitochondrial membrane, not in other mitochondrial subfractions. The composition of the incubation medium influenced the binding capacity, the best combination of high specific binding and low non-specific binding being observed in phosphate buffer, pH 6·4. The specific binding of 3,3′-T2 to mitochondria requires low ionic strength: concentrations of K+ and Na+ higher than 10 mmol/l and 0·1 mmol/l respectively resulted in a decreased binding capacity. The optimal calcium ion concentration was in the range 0·01–1·0 mmol/l. Varying magnesium ion, over the range of concentrations used (0·1–100 mmol/l), had no effect. Both ADP and ATP, at over 1 mmol/l, resulted in an inhibition of the specific binding. Incubation with protease resulted in a decrease in specific binding and an increase in non-specific binding, thus indicating the proteic nature of the binding sites. In addition to the above factors in the local environment the thyroid state of the animal might influence the 3,3′-T2-binding capacity. In fact, the thyroid state of the animal seemed not to have an influence on the affinity constant, but it did affect binding capacity. Journal of Endocrinology (1997) 154, 119–124


Development ◽  
1971 ◽  
Vol 26 (2) ◽  
pp. 313-322
Author(s):  
R. I. Freshney ◽  
J. Paul

Aminolaevulinate synthetase, aminolaevulinate dehydratase, and haem synthetase, three enzymes which may have a regulatory role in haem synthesis, have been determined in liver extracts from different foetal stages of the mouse. Haemoglobin synthesis increases rapidly from early on the 14th day, after fertilization, to reach a maximum late on the 15th day. Aminolaevulinate synthetase reaches a maximum on the 14th day, 24–36 h before the peak of haemoglobin synthesis, aminolaevulinate dehydratase on the 15th day, about 12 h before the peak of haemoglobin synthesis, and haem synthetase on the 17th day. Maximal activity of aminolaevulinate synthetase and aminolaevulinate dehydratase is of only a few hours' duration. Throughout embryonic development the activities of all three enzymes are higher than in the adult liver. The absence of a correlation of enzyme activity with foetal liver cell population changes implies that fluctuations in enzyme activity cannot be explained solely by changes in the proportions of different cell types. The high levels of activity relative to those of adult liver may be related to the high proportion of erythroid cells in the foetal liver. It is concluded that these enzymes are unlikely to form rate-limiting steps during the increase in haemoglobin synthesis between 14 and 15 days.


1976 ◽  
Vol 21 (2) ◽  
pp. 329-340
Author(s):  
B.G. Forde ◽  
B.E. Gunning ◽  
P.C. John

The ratio of inner to outer mitochondrial membrane area remains close to 1–8 throughout the cell cycle in synchronized cells of Chlorella fusca var, vacuolata 211-8p. Using estimates of this ratio, together with our previous estimates of mitochondrial surface area, to calculate the absolute area of inner mitochondrial membrane, it is demonstrated that growth of the inner mitochondrial membrane during the cell cycle occupies an extended period and parallels the growth of the whole cell. In contrast, the synthesis of succinate dehydrogenase and cytochrome oxidase is restricted to the last third of the cell cycle. It is concluded that mitochondrial growth involves the intercalation of periodically synthesized respiratory enzymes into membranes made earlier in the cycle, with consequent 5-fold changes in the density of active enzyme molecules in the membrane. These observations are discussed in relation to the control of mitochondiral membrane synthesis, membrane assembly and respiration rate during the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document