scholarly journals The composition of peptidochitodextrins from sarcophagid puparial cases

1971 ◽  
Vol 125 (3) ◽  
pp. 703-716 ◽  
Author(s):  
H. Lipke ◽  
T. Geoghegan

1. N-Bromosuccinimide cleaved proteins and pigments from fly puparia, increasing the chitin:protein ratio from 0.5 to 1.5. The product afforded subfractions (ratio 5:1) of molecular weights of 1200 and 1600 devoid of aromatic residues and N-terminal β-alanine, direct aryl links between polysaccharide chains being discounted. 2. The chitin–protein complex decreased in molecular weight when treated with Pronase, which suggested polypeptide bridges within the native chitin micelle. The limit dextrins generated by chitinase were mixtures of unsubstituted dextrins and peptidylated oligosaccharides, with the former predominating. 3. Peptidochitodextrins of similar molecular weight but markedly different solubility were prepared, which were indistinguishable with respect to amino acid, glucosamine, acetyl, X-ray or infrared characteristics. It is suggested that physical interactions contribute to the stability of the integument in addition to the covalent bonds that form during sclerotization.

Soil Research ◽  
1969 ◽  
Vol 7 (3) ◽  
pp. 229 ◽  
Author(s):  
JHA Butler ◽  
JN Ladd

Humic acids extracted from soil with sodium pyrophosphate have greater proportions of lower molecular weight material, less acid-hydrolysable amino acid nitrogen contents, but greater carboxyl contents and extinction values (260 and 450 nm) than humic acids extracted subsequently from the same sample with alkali. Humic acids extracted with alkali from fresh soil samples have intermediate values. Extinction values at 260 nm are directly correlated with carboxyl contents for a given soil. Different crop histories have no significant effect on the measured properties of the extracted humic acids. An alkali-extracted humic acid has been fractionated by gel filtration into seven fractions of different nominal molecular weight ranges. As the molecular weights of the fractions increase, both aliphatic C-H (based on infrared absorption at 2900 cm-1) and acid-hydrolysable amino acid contents increase, whereas extinction values at 260 nm and carboxyl contents decrease. The infrared spectra of the high molecular weight fractions have peaks at 1650 and 1510 cm-1 which correlate with acid-hydrolysable amino acid contents and which correspond to amide I and II bands of peptide bonds. Alkaline hydrolysis to split peptide bonds eliminates both these peaks. The spectra also have peaks at 1720 and 1210 cm-1 which correlate with the carboxyl content.


1971 ◽  
Vol 124 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Abraham Spector ◽  
Lu-Ku Li ◽  
Robert C. Augusteyn ◽  
Arthur Schneider ◽  
Thomas Freund

α-Crystallin was isolated from calf lens periphery by chromatography on DEAE-cellulose and gel filtration. Three distinct populations of macromolecules have been isolated with molecular weights in the ranges approx. 6×105−9×105, 0.9×106−4×106and greater than 10×106. The concentration of macromolecules at the molecular-weight limits of a population are very low. The members of the different populations do not appear to be in equilibrium with each other. Further, in those molecular-weight fractions investigated, no equilibrium between members of the same population was observed. The population of lowest molecular weight comprises 65–75% of the total material. The amino acid and subunit composition of the different-sized fractions appear very similar, if not identical. The only chemical difference observed between the fractions is the presence of significant amounts of sugar in the higher-molecular-weight fractions. Subunit molecular weights of approx. 19.5×103and 22.5×103were observed for all α-crystallin fractions.


1990 ◽  
Vol 10 (11) ◽  
pp. 5839-5848
Author(s):  
S Kang ◽  
R L Metzenberg

In response to phosphorus starvation, Neurospora crassa makes several enzymes that are undetectable or barely detectable in phosphate-sufficient cultures. The nuc-1+ gene, whose product regulates the synthesis of these enzymes, was cloned and sequenced. The nuc-1+ gene encodes a protein of 824 amino acids with a predicted molecular weight of 87,429. The amino acid sequence shows homology with two yeast proteins whose functions are analogous to that of the NUC-1 protein. Two nuc-1+ transcripts of 3.2 and 3.0 kilobases were detected; they were present in similar amounts during growth at low or high phosphate concentrations. The nuc-2+ gene encodes a product normally required for NUC-1 function, and yet a nuc-2 mutation can be complemented by overexpression of the nuc-1+ gene. This implies physical interactions between NUC-1 protein and the negative regulatory factor(s) PREG and/or PGOV. Analysis of nuc-2 and nuc-1; nuc-2 strains transformed by the nuc-1+ gene suggests that phosphate directly affects the level or activity of the negative regulatory factor(s) controlling phosphorus acquisition.


2015 ◽  
Vol 60 (2) ◽  
pp. 1561-1564
Author(s):  
E.-H. Lee ◽  
K.-M. Kim ◽  
W.-Y. Maeng ◽  
D.-H. Hur

Abstract After preparing aqueous suspensions from magnetite particles with a poly-acrylic acid, we investigated the effects of several experimental parameters. We characterized the stability of the suspensions using visual inspection, sedimentation, adsorption, and thermal stability of the dispersant. The dispersion stability is affected by the solution pH, the concentrations of magnetite particles, the molecular weight, the concentration of the dispersants, and the temperature. The stability of the suspensions increased as the concentration of the dispersant and the temperature increased. In terms of the molecular weights of the dispersant, the suspensions with dispersant of low-molecular weight (1800) were more stable than those of high-molecular weight (250000) at room temperature. However, at high temperature the suspensions with high-molecular weight showed stability. The adsorption efficiency of the dispersant was very low. The dispersant of high-molecular weight showed a higher thermal integrity than that of low-molecular weight. From this work, we obtained the optimum conditions for stable aqueous suspensions of magnetite particles.


1990 ◽  
Vol 10 (11) ◽  
pp. 5839-5848 ◽  
Author(s):  
S Kang ◽  
R L Metzenberg

In response to phosphorus starvation, Neurospora crassa makes several enzymes that are undetectable or barely detectable in phosphate-sufficient cultures. The nuc-1+ gene, whose product regulates the synthesis of these enzymes, was cloned and sequenced. The nuc-1+ gene encodes a protein of 824 amino acids with a predicted molecular weight of 87,429. The amino acid sequence shows homology with two yeast proteins whose functions are analogous to that of the NUC-1 protein. Two nuc-1+ transcripts of 3.2 and 3.0 kilobases were detected; they were present in similar amounts during growth at low or high phosphate concentrations. The nuc-2+ gene encodes a product normally required for NUC-1 function, and yet a nuc-2 mutation can be complemented by overexpression of the nuc-1+ gene. This implies physical interactions between NUC-1 protein and the negative regulatory factor(s) PREG and/or PGOV. Analysis of nuc-2 and nuc-1; nuc-2 strains transformed by the nuc-1+ gene suggests that phosphate directly affects the level or activity of the negative regulatory factor(s) controlling phosphorus acquisition.


1970 ◽  
Vol 116 (5) ◽  
pp. 899-909 ◽  
Author(s):  
L. O. Uttenthal ◽  
D. B. Hope

1. Three neurophysins, proteins that bind the polypeptide hormones oxytocin and vasopressin, have been isolated from acetone-dried porcine posterior pituitary lobes. The proteins have been named porcine neurophysins-I, -II and -III in order of their electrophoretic mobilities at pH8.1. 2. Electrophoretic comparison of the purified proteins, which are homogeneous on starch-gel electrophoresis, with the soluble proteins of fresh porcine posterior pituitary lobes extracted in 0.1m-HCl and in buffer pH8.1 suggests that the isolated proteins are native to the fresh tissue. 3. Neurophysins-I and -II are present in similar amounts in the tissue, whereas neurophysin-III is present only in small quantities. Acetone-dried tissue also contains traces of other hormone-binding neurophysin components. 4. All the neurophysins can bind both oxytocin and [8-lysine]-vasopressin. 5. The apparent molecular weights of the neurophysins increase with increasing protein concentration as measured by equilibrium sedimentation in the ultracentrifuge. 6. Neurophysins-I and -III are of similar molecular dimensions, contain one residue of methionine per molecule and lack histidine. The minimum molecular weight of neurophysin-I obtained by amino acid analysis is 9360. Neurophysin-II is of larger molecular dimensions than neurophysins-I and -III and can be separated from these by gel filtration on Sephadex G-75. It contains no histidine or methionine, and its minimum molecular weight has been estimated as 14020 by amino acid analysis. 7. Each of the three neurophysins possesses N-terminal alanine. 8. The possible biological significance of the existence of several neurophysins within one species is discussed.


Author(s):  
Roland Lüthy ◽  
David Eisenberg

Given a protein sequence, the amino acid composition can be determined by counting the number of residues of each type. Then a molecular weight can be calculated by summing the molecular weights of the individual amino acid residues, taking into account the loss of one H2O molecule per peptide bond. Table 1 lists the molecular weights of the twenty amino acids and water. This approach assumes that the protein has not been covalently modified. Because of extensive glycosylation of some proteins, this approach can significantly underestimate the actual molecular weight. With the pKa values of Table 1, it is possible to calculate the theoretical charge of a protein at a given pH by summing the charges of the amino acid side chains and of the amino terminus and carboxyl terminus. By performing this calculation over a pH range, one obtains a theoretical titration curve and an isoelectric point (the pH at which the protein hasanetchargeof zero). This method assumes that all normally titratable groups are accessible to water, and that all side chains have the intrinsic pKa values listed in Table 1. This assumption is not completely correct, and consequently, the theoretical isoelectric point may differ from the experimentally determined value. Figure 1 shows the calculated titration curve for pancreatic ribonuclease: the calculated isoelectric point is 8.2, whereas the measured value is 9.6 (Lehninger, 1977). The calculation of extinction coefficients (Gill and von Hippel, 1989) is performed in much the same way as that of the isoelectric point Individual residues are treated as if they are free amino acids, and the overall extinction coefficient is calculated as the sum of the extinction coefficients of the residues. The same basic assumption is made: Residues are assumed to be in typical environments and not to show unusual absorption due to their local environments. In the case of the extinction coefficient, however, this assumption seems to be generally acceptable; calculated extinction coefficients are typically within a few percent of the experimentally determined value, and errors of more than 15% are rare (Gill and von Hippel, 1989).


1991 ◽  
Vol 130 (2) ◽  
pp. R1-R4 ◽  
Author(s):  
J. L. Vallet ◽  
P. J. Barker ◽  
G. E. Lamming ◽  
N. Skinner ◽  
N. S. Huskisson

ABSTRACT Ovine trophoblast protein-1 (oTP-1), stimulates the secretion of several proteins in explant culture of day-12 cyclic ovine endometrium. We partially purified and identified one of these proteins, an 11,000 Mr, pI approx. 6 protein by N-terminal amino acid sequencing and immunoprecipitation using antibody to human β2-microglobulin. The protein was purified from cultures of endometrium collected from day-16 pregnant ewes. The N-terminal amino acid sequence was 40–55% homologous to β2-microglobulin from a variety of species. Antibody to human β2-microglobulin immunoprecipitated the protein and another protein of similar molecular weight but more acidic pi. Using immunoprecipitation of radiolabelled proteins from culture, we demonstrated that oTP-1 increased production of this protein by 40% (P<0.05). We conclude that oTP-1 increases the secretion of a β2-microglobulin-like protein from day-12 non-pregnant endometrium in culture.


2020 ◽  
Author(s):  
◽  
Trisha Mogany

Cyanobacteria are photosynthetic microorganisms that inhabit diverse ecological habitats and are capable of producing wide range of natural products and bioactive metabolities including peptides, vitamins, enzymes and pigments such as phycobiliproteins. Amongst the group of phycobiliproteins, C-Phycocyanin (C-PC) is a light-harvesting accessory pigment known to possess excellent biotechnological applications due to their intense colour, fluorescent properties and health benefits. This study has focused on the characterisation and full genome analysis of a unique indigenous halophilic cyanobacterium capable of overproducing the pigment phycocyanin (C-PC). Further, development of a cost-effective extraction method for high purity C-PC and characterisation of the purified C-PC was accomplished. The strain was isolated from a hypersaline environment in KwaZulu-Natal, South Africa and was found to possess several unique traits such as its ability to accumulate high amount of phycocyanin, tolerance to high salinity (up to 180 g/L), ability to grow under varying growth conditions and high growth rate. The taxonomic identity of the isolate was revealed using a polyphasic approach including cell morphology, growth conditions, pigment composition, 16S rRNA analysis. The cells were oval to rod-shaped, 14-18 μm in size, and contained majority of C-PC, as well as some allophycocyanin and chlorophyll. The strain was moderately thermotolerant (35°C), alkalitolerant (pH 8.5) and was halophilic with an optimum NaCl of 120 g/L. Based on the 16S rRNA gene sequence phylogeny, the strain was found to be related to members of the ‘Euhalothece’ subcluster (99%). Further, the whole genome sequence was also determined, and the annotated genes have shown sequence similarity (90%) to the gas- vacuolate, spindle-shaped Dactylococcopsis salina PCC 8305. Based on the above results, the strain is considered to represent a novel species of Euhalothece. The size of the genome was determined to be 5,113,178 bp and contained 4332 protein-coding genes and 69 RNA genes with a GC content of 46.7%. The full genome sequence analysis also provided important information about the strain which facilitated the identification of key genes and proteins necessary for C-PC synthesis and salt acclimation. Genes encoding osmoregulation, oxidative stress, heat shock, persister cells, and UV-absorbing secondary metabolites, among others, were also identified. Further, single factor experiments were performed to optimise the factors (extraction buffers, freezing time, biomass:buffer ratio and lysozyme concentration) essential for C-PC extraction from cyanobacteria. A range of buffers viz., acetate, potassium phosphate (PPB), sodium phosphate (SPB), phosphate buffered saline (PPBS), Tris-chloride and double distilled water (control) with different pH and concentrations were investigated. Cell lysis was carried out by freezing the cells at different temperatures viz., at -196, and -80, and -20°C, and by thawing at 4 and 25°C. The freezing and thawing time varied from 0.5-24 h. Based on the results obtained, thawing temperature, enzyme concentration and biomass-buffer ratio were further selected for optimisation for maximum C-PC yield and purity using response surface methodology (RSM). Under optimised conditions, the yield of crude C-PC was increased to 78 mg/g (>90% percentage increase) with a purity index of 2.5 compared to extraction prior to optimisation. The crude C-PC was further purified using 6% w/v of activated charcoal combined with a two-step ammonium sulphate (NH4SO4) precipitation and ultrafiltration which resulted in high yield analytical grade C-PC with a purity index of 5. The purified C-PC showed a single absorption peak at 620 nm and emission at 640 nm. Based on the amino acid analysis the calculated molecular weight of α- and β-subunits were found to be 17.7 and 18.4 kDa respectively, which corresponded to the two bands seen on the SDS- PAGE. Additionally, the primary, secondary and tertiary structures of the C-PC was also evaluated based on the amino acid sequence obtained from the genome sequence. The C-PC physiochemical properties such as the molecular weight, isoelectric point, extinction coefficient, half-life, aliphatic index, amino acid property, instability index and Grand Average of Hydropathicity was predicted based on the in-silico analysis of the amino acid sequences. The physicochemical properties revealed that these proteins are non-polar and stable. Multiple sequence alignment analyses of the α- and β-subunits displayed significant differences amongst the amino acid residues of hypersaline/marine and freshwater cyanobacteria. These amino acids play a vital role in the stability of the C-PC. The secondary structure prediction of the α- and β -subunits consisted of > 50% of amino acid residues in α-helices, with 9-13% of amino acid residues in the extended strand. The stability of the purified C-PC under different conditions were investigated. The optimum pH range for purified C-PC was found to be 5.0–7.0 and was found to be stable up to 45oC. However, the relative concentration C-PC (CR%) and thermostability of the purified C-PC was observed to be pH dependent, a lower pH improved the stability at higher temperatures and vice-versa. An IC50 value of 0.540 ± 0.02 mg/mL was also observed using the DPPH assay indicating a higher antioxidant potential of the C-PC. C-phycocyanin exhibited a maximum absorbance of 1.37 ± 0.05 by ferric ion reducing assay. The presence of a high level of non-polar and aromatic residues such as Ala, Gly Glu, Leu, Arg, Ser, and Val could be regarded as an indication of higher antioxidant activity levels of the C-PC. Addition of preservatives sodium azide and sodium citrate (at 4°C) proved to be suitable for preservation of C-PC for up to 42 weeks. This research contributed to our understanding of molecular, cellular and biochemical mechanisms of the C-PC biosynthesis as well as newly identified metabolites in cyanobacteria. The study has also demonstrated an efficient extraction method for analytical grade C-PC from cyanobacterial strains for potential applications in biotechnological biomedical industries.


1952 ◽  
Vol 35 (4) ◽  
pp. 629-637 ◽  
Author(s):  
Choh Hao Li ◽  
Kai O. Pedersen

The physiochemical characteristics of the follicle-stimulating hormone (FSH) from whole sheep pituitary glands have been studied. The hormone behaves as a single protein in electrophoresis, diffusion, and ultracentrifugation. It has an isoelectric point at pH 4.5 and a molecular weight of 67,000 and contains 1.23 per cent hexose and 1.51 per cent hexosamine. The amino acid composition has also been determined in large part. The stability of the hormone to acid and heat has been investigated.


Sign in / Sign up

Export Citation Format

Share Document