Effect of extractant and molecular size on the optical and chemical properties of soil humic acids

Soil Research ◽  
1969 ◽  
Vol 7 (3) ◽  
pp. 229 ◽  
Author(s):  
JHA Butler ◽  
JN Ladd

Humic acids extracted from soil with sodium pyrophosphate have greater proportions of lower molecular weight material, less acid-hydrolysable amino acid nitrogen contents, but greater carboxyl contents and extinction values (260 and 450 nm) than humic acids extracted subsequently from the same sample with alkali. Humic acids extracted with alkali from fresh soil samples have intermediate values. Extinction values at 260 nm are directly correlated with carboxyl contents for a given soil. Different crop histories have no significant effect on the measured properties of the extracted humic acids. An alkali-extracted humic acid has been fractionated by gel filtration into seven fractions of different nominal molecular weight ranges. As the molecular weights of the fractions increase, both aliphatic C-H (based on infrared absorption at 2900 cm-1) and acid-hydrolysable amino acid contents increase, whereas extinction values at 260 nm and carboxyl contents decrease. The infrared spectra of the high molecular weight fractions have peaks at 1650 and 1510 cm-1 which correlate with acid-hydrolysable amino acid contents and which correspond to amide I and II bands of peptide bonds. Alkaline hydrolysis to split peptide bonds eliminates both these peaks. The spectra also have peaks at 1720 and 1210 cm-1 which correlate with the carboxyl content.

Soil Research ◽  
1966 ◽  
Vol 4 (1) ◽  
pp. 41 ◽  
Author(s):  
JN Ladd ◽  
JHA Butler

Twenty-three model phenolic polymers, either nitrogen-free or incorporating amino acids, peptides, or proteins, have been prepared from p-benzoquinone and catechol under mild oxidative conditions. Two lines of experimentation have demonstrated properties of soil humic acids closely similar to those of polymers incorporating proteins, but different from those of polymers incorporating amino acids: (1) fractionation of humic acids and synthetic polymers by 'Sephadex' gel filtration showed that the percentage of components of molecular weights nominally greater than 100 000 ranged from 52-76 % for eight humic acids tested, 53-59 % for benzoquinone-protein polymers (excluding polymers containing protamine), but less than 20% for all other polymers; (2) acid hydrolysis with 6M HCl resulted in a partial release of polymer nitrogen. Amino acid nitrogen in the hydrolysates accounted for 32.4-51.9 % of humic acid nitrogen, 31.2-56.3 % of the nitrogen of polymers incorporating protein, but less than 10.8% of the nitrogen of polymers incorporating individual amino acids. Experiments with model monomeric N-phenylglycine derivatives and with polymers incorporating simple peptides showed that the bond between the carbon atom of an aromatic ring and the nitrogen atom of an a-amino acid is far more stable to acid hydrolysis than peptide bonds or bonds linking amino acids in humic acids. Glycine is, however, readily released from N-phenylglycine derivatives when conditions favour their oxidation to a quinone-imine intermediate. Incorporation of proteins into phenolic polymers prevented the detection of peptide bonds by the Folin reagent.


1971 ◽  
Vol 124 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Abraham Spector ◽  
Lu-Ku Li ◽  
Robert C. Augusteyn ◽  
Arthur Schneider ◽  
Thomas Freund

α-Crystallin was isolated from calf lens periphery by chromatography on DEAE-cellulose and gel filtration. Three distinct populations of macromolecules have been isolated with molecular weights in the ranges approx. 6×105−9×105, 0.9×106−4×106and greater than 10×106. The concentration of macromolecules at the molecular-weight limits of a population are very low. The members of the different populations do not appear to be in equilibrium with each other. Further, in those molecular-weight fractions investigated, no equilibrium between members of the same population was observed. The population of lowest molecular weight comprises 65–75% of the total material. The amino acid and subunit composition of the different-sized fractions appear very similar, if not identical. The only chemical difference observed between the fractions is the presence of significant amounts of sugar in the higher-molecular-weight fractions. Subunit molecular weights of approx. 19.5×103and 22.5×103were observed for all α-crystallin fractions.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1970 ◽  
Vol 116 (5) ◽  
pp. 899-909 ◽  
Author(s):  
L. O. Uttenthal ◽  
D. B. Hope

1. Three neurophysins, proteins that bind the polypeptide hormones oxytocin and vasopressin, have been isolated from acetone-dried porcine posterior pituitary lobes. The proteins have been named porcine neurophysins-I, -II and -III in order of their electrophoretic mobilities at pH8.1. 2. Electrophoretic comparison of the purified proteins, which are homogeneous on starch-gel electrophoresis, with the soluble proteins of fresh porcine posterior pituitary lobes extracted in 0.1m-HCl and in buffer pH8.1 suggests that the isolated proteins are native to the fresh tissue. 3. Neurophysins-I and -II are present in similar amounts in the tissue, whereas neurophysin-III is present only in small quantities. Acetone-dried tissue also contains traces of other hormone-binding neurophysin components. 4. All the neurophysins can bind both oxytocin and [8-lysine]-vasopressin. 5. The apparent molecular weights of the neurophysins increase with increasing protein concentration as measured by equilibrium sedimentation in the ultracentrifuge. 6. Neurophysins-I and -III are of similar molecular dimensions, contain one residue of methionine per molecule and lack histidine. The minimum molecular weight of neurophysin-I obtained by amino acid analysis is 9360. Neurophysin-II is of larger molecular dimensions than neurophysins-I and -III and can be separated from these by gel filtration on Sephadex G-75. It contains no histidine or methionine, and its minimum molecular weight has been estimated as 14020 by amino acid analysis. 7. Each of the three neurophysins possesses N-terminal alanine. 8. The possible biological significance of the existence of several neurophysins within one species is discussed.


1981 ◽  
Author(s):  
J Harmon ◽  
G A Jamieson ◽  
G Rock

Loss of activity during electron irradiation provides a means of determining the molecular size of specific molecules in complex biological mixtures. This technique has established a molecular weight of 200,000 for Factor VIII:C in concentrates prepared from citrated plasma in which calcium is sequestered by chelation (Aronson, et al. Thromb. Diath. Haemorrh. 8:270, 1962): this value is similar to that obtained by more conventional techniques. However recent data suggest that in heparinized plasma, where physiological levels of calcium are maintained, about half of the VIII:C activity has a molecular weight of 50,000 as determined by gel filtration and ultracentrifugation (Rock, et al. Thromb. Res. 13:85, 1978). When heparinized plasma was subjected to electron irradiation in the frozen state there was a perceptible loss of VIII:C activity at 1 megarad and 80% loss with 60 megarads of irradiation. Analysis of the course of inactivation showed a biphasic curve with 73% of the VIII:C activity having a target size of 40,000 daltons while 28% had a molecular weight in excess of one million. Similar results were obtained when blood was collected in citrate and rapidly processed (∼5 min) to platelet-poor plasma. Following electron irradiation, 62% of VIII:C activity showed a target size of 35,000 daltons while the remaining 38% gave a target size of 275,000. These results provide further evidence that circulating VIII:C activity in normal plasma has a molecular weight of about 40,000 and suggest that reports of higher molecular weights are an artifact of the chelation of calcium as evidenced by the biphasic decay of VIII:C activity in citrated plasma.


1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


1984 ◽  
Vol 62 (5) ◽  
pp. 276-279 ◽  
Author(s):  
C. H. Lin ◽  
W. Chung ◽  
K. P. Strickland ◽  
A. J. Hudson

An isozyme of S-adenosylmethionine synthetase has been purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and gel filtration on a Sephadex G-200 column. The purified enzyme is very unstable and has a molecular weight of 120 000 consisting of two identical subunits. Amino acid analysis on the purified enzyme showed glycine, glutamate, and aspartate to be the most abundant and the aromatic amino acids to be the least abundant. It possesses tripolyphosphatase activity which can be stimulated five to six times by S-adenosylmethionine (20–40 μM). The findings support the conclusion that an enzyme-bound tripolyphosphate is an obligatory intermediate in the enzymatic synthesis of S-adenosylmethionine from ATP and methionine.


1989 ◽  
Vol 69 (2) ◽  
pp. 253-262 ◽  
Author(s):  
M. SCHNITZER ◽  
P. SCHUPPLI

Organic matter (OM) in the Bainsville and Melfort soils, and in coarse clay and medium silt fractions separated from these soils, was extracted under N2 with 0.5 M NaOH and unadjusted 0.1 M Na4P2O7 solutions. pH ranges of the soils and fractions in contact for 24 h with 0.5 M NaOH and 0.1 M Na4P2O7 solutions extended from 12.2 to 12.6 and 9.0 to 9.4, respectively. Slightly greater proportions of the soil-carbon were extracted by 0.5 M NaOH than by 0.1 M Na4P2O7 solution. The differences, however, did not appear to be significant and may vary from soil to soil. The efficiency of extraction and the characteristics of the extracted materials were assessed on humic acids (HAs), which were isolated from the extracts. From the Bainsville soil and fractions, 0.1 M Na4P2O7 solution extracted more high-molecular weight and more deeply colored HAs than did 0.5 M NaOH solution. But HAs extracted from the Melfort soil and fractions had similar molecular weights and colours. 13C NMR spectra showed that HAs extracted by 0.1 M Na4P2O7 solution tended to be more aromatic than HAs extracted by 0.5 M NaOH solution. Well defined solid-state 13C NMR spectra of HAs, containing up to 69.0% ash, could be recorded. Unadjusted 0.1 M Na4P2O7 solution under N2 was found to be an attractive alternative to 0.5 M NaOH solution as an extractant for soil OM. Key words: Humic acids, E4:E6 ratios, IR spectra, 13C NMR spectra, aromaticity


1972 ◽  
Vol 130 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Colin H. Self ◽  
P. David J. Weitzman

Two isoenzymes of NADP-linked isocitrate dehydrogenase have been identified in Acinetobacter lwoffi and have been termed isoenzyme-I and isoenzyme-II. The isoenzymes may be separated by ion-exchange chromatography on DEAE-cellulose, by gel filtration on Sephadex G-200, or by zonal ultracentrifugation in a sucrose gradient. Low concentrations of glyoxylate or pyruvate effect considerable stimulation of the activity of isoenzyme-II. The isoenzymes also differ in pH-dependence of activity, kinetic parameters, stability to heat or urea and molecular size. Whereas isoenzyme-I resembles the NADP-linked isocitrate dehydrogenases from other organisms in having a molecular weight under 100000, isoenzyme-II is a much larger enzyme (molecular weight around 300000) resembling the NAD-linked isocitrate dehydrogenases of higher organisms.


1990 ◽  
Vol 45 (1-2) ◽  
pp. 74-78 ◽  
Author(s):  
Jobst-Heinrich Klemme ◽  
Gisela Laakmann-Ditges ◽  
Jutta Mertschuweit

Aspartate kinase (AK , EC 2.7.2.4) from the thermophilic, phototrophic prokaryote, Chloroflexus aurantiacus, was partially purified and separated from homoserine dehydrogenase (HSDH, EC 1.1.1.3). The molecular weights as determined by gel filtration were 130,000 and 46,000, respectively. HSDH had a moderately high thermal stability (50% inactivation at 84 °C) and displayed its activity optimum at 72 °C. By contrast, AK had its activity optimum at 52 °C (with a break-point in the Arrhenius plot at 42 °C) and was much less thermostable (50% inactivation at 67 °C). The Km-values for aspartate and ATP (determined in a pyruvate kinase-coupled test system) were 10.5 and 0.63 mM , respectively. The enzyme was strongly inhibited by L-threonine (Ki = 10 μm) and activated by alanine, isoleucine, valine and methionine. L-Threonine acted as a mixed-type inhibitor in respect to aspartate, and non-competitively in respect to ATP. Contrary to AKs from Rhodospirillaceae, the enzyme from Chloroflexus aurantiacus was not subject to a concerted feedback inhibition by two amino acids of the aspartate family. The regulatory properties of the aspartate kinase are discussed in relation to the cellular amino acid concentrations.


Sign in / Sign up

Export Citation Format

Share Document