scholarly journals A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles

1975 ◽  
Vol 148 (3) ◽  
pp. 533-537 ◽  
Author(s):  
R B Beechey ◽  
S A Hubbard ◽  
P E Linnett ◽  
A D Mitchell ◽  
E A Munn

An almost pure form of the bovine heart mitochondrial adenosine triphosphatase (ATPase) is released from the membrane by shaking submitochondrial particles with chloroform. Analyses on polyacrylamide gels and by electron microscopy, and also sensitivity to inhibitors, show that the chloroform-released enzyme is similar to other ATPase preparations from bovine heart mitochondria.

1977 ◽  
Vol 162 (2) ◽  
pp. 351-357 ◽  
Author(s):  
S J Ferguson ◽  
D A Harris ◽  
G K Radda

1. The activity of the ATPase (adenosine triphosphatase) of phosphorylating particles prepared by sonication of bovine heart mitochondria in the presence of MgCl2 and ATP is influenced by the isolation method for the mitochondria used in the preparation of particles. Type-I particles, made from mitochondria isolated in a medium lacking succinate, have a lower ATPase activity than to Type-II particles, which are prepared from mitochondria isolated in a medium containing succinate. 2. Centrifugation under appropriate energized conditions increases the ATPase activity of Type-I particles almost to that of the Type-II particles. The ATPase activity of Type-II particles was only slightly stimulated by this procedure. These data are interpreted as indicating a higher content of the ATPase-inhibitor protein in the Type-I particles. 3. A comparison was made of the ATP-driven enhancement of 8-anilinonaphthalene-1-sulphonate fluorescence and the exchange of the endogenous tightly bound nucleotides of the ATPase in Type-I and Type-II particles. The effect of exogenous inhibitor protein on both these reactions was also studied. 4. The time-scale on which the inhibitor protein can exchange between ATPase molecules is discussed.


1982 ◽  
Vol 679 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Egbert J. Boekema ◽  
Jan F.L. Van Breemen ◽  
Wilko Keegstra ◽  
Ernst F.J. Van Bruggen ◽  
Simon P.J. Albracht

1977 ◽  
Vol 168 (2) ◽  
pp. 299-303 ◽  
Author(s):  
S J Ferguson ◽  
M C Sorgato

A phosphorylation potential deltaGp, where deltaGp = deltaGo' + RT2.303 log ([ATP]/([ADP][Pi])), of approx. 44.3 kJ.mol-1 (10.6 kcal.mol-1) was generated by submitochondrial particles that were oxidizing either NADH or succinate. Addition of adenylyl imidodiphosphate, which should suppress adenosine triphosphatase activity of any uncoupled particles, did not raise the phosphorylation potential. Raising the Pi concentration slightly increased the magnitude of the value for [ATP]/[ADP], but this did not fully compensate for the increased Pi concentration, so that the phosphorylation potential decreased slightly as the Pi concentration was raised. The phosphorylation potential developed by submitochondrial particles is lower than that generated by phosphorylating membrane vesicles from some bacteria, and is also less than that developed externally by mitochondria, but is strikingly close to the phosphorylation potential that is generated internally by mitochondria.


1976 ◽  
Vol 159 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S J Ferguson ◽  
W J Lloyd ◽  
G K Radda

1. Modification of a single amino acid residue by introduction of the nitrobenzofurazan group inactivates mitochondrial ATPase (adenosine triphosphatase) when membrane-bound in submitochondrial particles. The similarity between the reactions of both membrane-bound and isolated ATPase with 4-chloro-7-nitrobenzofurazan indicates that the single essential tryosine residue identified in the isolated enzyme [Ferguson, Loyd, Lyons & Radda (1975) Eur. J. Biochem. 54, 117-126] Is also a feature of the membrane-bound ATPase. 2. A procedure is presented for estimating the ATPase content of the inner mitochondrial membrane. It is based on the specificity of the incorporation of the nitrobenzofurazan group, and the ready removal of this group by compounds that contain a thiol group. This method indicates that 8.5% of the membrane protein is ATPase. The procedure should be applicable to the titration of the energy-transducing ATPases of bacterial plasma membranes and of the thylakoid membranes of chloroplasts. 3. Combination of the data obtained on the ATPase content of the bovine heart inner mitochondrial membrane with a titration of the cytochrome bc1 complex with antimycin indicates that these two components of the membrane are present in approximately equal amounts.


Sign in / Sign up

Export Citation Format

Share Document