scholarly journals A method for determining the adenosine triphosphatase content of energy-transducing membranes. reaction of 4-chloro-7-nitrobenzofurazan with the adenosine triphosphatase of bovine heart submitochondrial particles

1976 ◽  
Vol 159 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S J Ferguson ◽  
W J Lloyd ◽  
G K Radda

1. Modification of a single amino acid residue by introduction of the nitrobenzofurazan group inactivates mitochondrial ATPase (adenosine triphosphatase) when membrane-bound in submitochondrial particles. The similarity between the reactions of both membrane-bound and isolated ATPase with 4-chloro-7-nitrobenzofurazan indicates that the single essential tryosine residue identified in the isolated enzyme [Ferguson, Loyd, Lyons & Radda (1975) Eur. J. Biochem. 54, 117-126] Is also a feature of the membrane-bound ATPase. 2. A procedure is presented for estimating the ATPase content of the inner mitochondrial membrane. It is based on the specificity of the incorporation of the nitrobenzofurazan group, and the ready removal of this group by compounds that contain a thiol group. This method indicates that 8.5% of the membrane protein is ATPase. The procedure should be applicable to the titration of the energy-transducing ATPases of bacterial plasma membranes and of the thylakoid membranes of chloroplasts. 3. Combination of the data obtained on the ATPase content of the bovine heart inner mitochondrial membrane with a titration of the cytochrome bc1 complex with antimycin indicates that these two components of the membrane are present in approximately equal amounts.

1975 ◽  
Vol 148 (3) ◽  
pp. 533-537 ◽  
Author(s):  
R B Beechey ◽  
S A Hubbard ◽  
P E Linnett ◽  
A D Mitchell ◽  
E A Munn

An almost pure form of the bovine heart mitochondrial adenosine triphosphatase (ATPase) is released from the membrane by shaking submitochondrial particles with chloroform. Analyses on polyacrylamide gels and by electron microscopy, and also sensitivity to inhibitors, show that the chloroform-released enzyme is similar to other ATPase preparations from bovine heart mitochondria.


1977 ◽  
Vol 75 (1) ◽  
pp. 119-134 ◽  
Author(s):  
C M Cohen ◽  
D I Kalish ◽  
B S Jacobson ◽  
D Branton

HeLa cell plasma membranes have been purified after binding cells to polylysine-coated polyacrylamide beads. Cell attachment to beads and membrane recovery were maximal in a sucrose-acetate buffer, pH 5.0, at 25 degrees C. Measurements of ouabain-sensitive NaK-adenosine triphosphatase, membrane-bound 125I-wheat germ agglutinin, and chemical analyses showed that membranes on beads were of comparable or greater purity than membranes isolated by conventional methods. Because the isolation procedure is rapid (approximately 2.5 h), and produces membranes whose protoplasmic surfaces are fully exposed, it should be a useful supplement to standard isolation techniques.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jiuwei Lu ◽  
Chun Chan ◽  
Leiye Yu ◽  
Jun Fan ◽  
Fei Sun ◽  
...  

AbstractCardiolipin, an essential mitochondrial physiological regulator, is synthesized from phosphatidic acid (PA) in the inner mitochondrial membrane (IMM). PA is synthesized in the endoplasmic reticulum and transferred to the IMM via the outer mitochondrial membrane (OMM) under mediation by the Ups1/Mdm35 protein family. Despite the availability of numerous crystal structures, the detailed mechanism underlying PA transfer between mitochondrial membranes remains unclear. Here, a model of Ups1/Mdm35-membrane interaction is established using combined crystallographic data, all-atom molecular dynamics simulations, extensive structural comparisons, and biophysical assays. The α2-loop, L2-loop, and α3 helix of Ups1 mediate membrane interactions. Moreover, non-complexed Ups1 on membranes is found to be a key transition state for PA transfer. The membrane-bound non-complexed Ups1/ membrane-bound Ups1 ratio, which can be regulated by environmental pH, is inversely correlated with the PA transfer activity of Ups1/Mdm35. These results demonstrate a new model of the fine conformational changes of Ups1/Mdm35 during PA transfer.


1975 ◽  
Vol 53 (7) ◽  
pp. 823-825 ◽  
Author(s):  
Charles E. Martin ◽  
Robert P. Wagner

Mitochondrial nuclease activity in Neurospora crassa occurs in membrane-bound and soluble forms in approximately equal proportions. These activities apparently are due to the same enzyme, which has an approximate molecular weight of 120 000. A portion of the insoluble enzyme appears to be associated with the inner mitochondrial membrane and is resistant to solubilization by detergent treatment as well as by physical disruption methods.


1975 ◽  
Vol 146 (2) ◽  
pp. 409-416 ◽  
Author(s):  
K Watson ◽  
R L Houghton ◽  
E Bertoli ◽  
D E Griffiths

The lipid composition of yeast cells was manipulated by the use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. There was a 2-3-fold decrease in the concentration of cytochromes a+a3 when the unsaturated fatty acid content of the cells was decreased from 60-70% of the total fatty acid to 20-30%. The amounts of cytochromes b and c were also decreased under these conditions, but to a lesser extent. Further lipid depletion, to proportions of less than 20% unsaturated fatty acid, led to a dramatic decrease in the content of all cytochromes, particularly cytochromes a+a3. The ATPase (adenosine triphosphatase), succinate oxidase and NADH oxidase activities of the isolated mitochondria also varied with the degree of unsaturation of the membrane lipids. The lower the percentage of unsaturated fatty acid, the lower was the enzymic activity. Inhibition of mitochondrial ATPase by oligomycin, on the other hand, was not markedly influenced by the membrane-lipid unsaturation. Npn-linear Arrenius plots of mitochondrial membrane-bound enzymes showed transition temperatures that were dependent on the degree of membrane-lipid unsaturation. The greater the degree of lipid unsaturation, the lower was the transition temperature. It was concluded that the degree of unsaturation of the membrane lipids plays an important role in determining the properties of mitochondrial membrane-bound enzymes.


1977 ◽  
Vol 162 (2) ◽  
pp. 351-357 ◽  
Author(s):  
S J Ferguson ◽  
D A Harris ◽  
G K Radda

1. The activity of the ATPase (adenosine triphosphatase) of phosphorylating particles prepared by sonication of bovine heart mitochondria in the presence of MgCl2 and ATP is influenced by the isolation method for the mitochondria used in the preparation of particles. Type-I particles, made from mitochondria isolated in a medium lacking succinate, have a lower ATPase activity than to Type-II particles, which are prepared from mitochondria isolated in a medium containing succinate. 2. Centrifugation under appropriate energized conditions increases the ATPase activity of Type-I particles almost to that of the Type-II particles. The ATPase activity of Type-II particles was only slightly stimulated by this procedure. These data are interpreted as indicating a higher content of the ATPase-inhibitor protein in the Type-I particles. 3. A comparison was made of the ATP-driven enhancement of 8-anilinonaphthalene-1-sulphonate fluorescence and the exchange of the endogenous tightly bound nucleotides of the ATPase in Type-I and Type-II particles. The effect of exogenous inhibitor protein on both these reactions was also studied. 4. The time-scale on which the inhibitor protein can exchange between ATPase molecules is discussed.


1990 ◽  
Vol 265 (3) ◽  
pp. 865-870 ◽  
Author(s):  
B B Hasinoff

The NADH-cytochrome c reductase activity of bovine heart submitochondrial particles was found to be slowly (half-time of 16 min) and progressively lost upon incubation with the Fe2(+)-adriamycin complex. In addition to this slow progressive inactivation seen on incubation, a reversible fast phase of inhibition was also seen. However, if EDTA was added to the incubation mixture within 15 s, the slow progressive loss in activity was largely preventable. Separate experiments indicated that EDTA removed about one-half of the iron from the Fe2(+)-adriamycin complex in about 40 s. These results indicated the requirement for iron for the inactivation process. Since the Vmax. for the fast phase of inhibition was decreased by the inhibitor, the inhibition pattern was similar to that seen for uncompetitive or mixed-type inhibition. The direct binding of both Fe3(+)-adriamycin and adriamycin to submitochondrial particles was also demonstrated, with the Fe3(+)-adriamycin complex binding 8 times more strongly than adriamycin. Thus binding of Fe3(+)-adriamycin to the enzyme or to the inner mitochondrial membrane with subsequent generation of oxy radicals in situ is a possible mechanism for the Fe3(+)-adriamycin-induced inactivation of respiratory enzyme activity.


Parasitology ◽  
1982 ◽  
Vol 84 (2) ◽  
pp. 391-396 ◽  
Author(s):  
P. W. Pappas ◽  
Elizabeth M. Narcisi

SUMMARYPreparations of isolated brush border plasma membrane of Hymenolepis diminuta and H. microstoma possess the following enzymatic activities: alkaline phosphohydrolase (E.C. 3.1.3.1); Type I phosphodiesterase (E.C. 3.1.4.1); ribonuclease (E.C. 3.1.4.22); adenosine triphosphatase (E.C. 3.6.1.3); and 5′-nucleotidase (E.C. 3.1.3.5). The following enzymatic activities could not be demonstrated in either membrane preparation: Type II phosphodiesterase (E.C. 3.1.4.18); cyclic adenosine-3′, 5′-monophosphate phosphodiesterase (E.C. 3.1.4.17); leucine aminopeptidase (E.C. 3.4.11.1); maltase (α-glucosidase; E.C. 3.2.1.20); and lactase (β-galactosidase; E.C. 3.2.1.23). These data generally agree with those of previous studies in which similar membrane-bound enzymes were demonstrated in intact (living) worms.


Sign in / Sign up

Export Citation Format

Share Document