scholarly journals The stimulation of the phospholipase A2-acylation system of synaptic membranes of brain by cyclic nucleotides

1975 ◽  
Vol 148 (3) ◽  
pp. 567-581 ◽  
Author(s):  
R J Gullis ◽  
C E Rowe

Hydrolysis of phosphatidylcholine by phospholipase A2 of synaptic membranes i n Tris-CHl buffer was stimulated by cyclic AMP, cyclic GMP, cyclic CMP, cyclic UMP and adenosine (0.1 mm). In the presence of 1 mm-NaF and cofactors, the same cyclic nucleotides and adenosine (10 mm) stimulated the incorporation of added oleate into the choline glycerophospholipids of synaptic membranes. Cyclic AMP and noradrenaline stimulated the incorporation of added oleate into position 2 of choline glycerophospholipid. Stimulation of net acylation was increased by preincubation in conditions which stimulated hydrolysis of phosphatidylcholine. Cyclic AMP only slightly stimulated the transfer of oleate from oleoyl-CoA into choline glycerophospholipid. The optimum concentration of CaCl2 for the stimulation of hydrolysis by phospholipase A2 by cyclic AMP was 1 mum. Stimulation of the incorporation of added oleate was maximal in the CaCl2 concentration range 1 mum-1mm. MgCl2 also enhanced stimulations, maximum effects being obtained with concentrations of 10 mum and 0.5 mm for hydrolysis by phospholipase A2 and incorporation of added oleate respectively. ATP enhanced the stimulation of incorporation of oleate but had no effect on the cyclic nucleotide stimulation of hydrolysis of added phosphatidylcholine by phospholipase A2. Adenosine, guanosine, ADP and 5′-AMP (all at 1 mm) inhibited the stimulation of incorporation of oleate by cyclic nucleotides and inhibited the transfer of oleate from oleoyl-CoA to phospholipid. They did not inhibit the stimulation of hydrolysis of added phosphatidylcholine (by phospholipase A2) by cyclic nucleotides, but inhibited the stimulation by noradrenaline, acetylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine) and histamine. Preincubation of synaptic membranes in the water or buffer increased the net activity of phospholipase A2. Preincubation with a mixture of ATP and MgCl2 increased the initial rate of acylation of membrane lipid.

1977 ◽  
Vol 164 (1) ◽  
pp. 287-288
Author(s):  
C E Rowe

Certain observations reported previously from this laboratory have not proved reproducible. These are (1) the relatively rapid hydrolysis of added phosphatidylcholine by phospholipase A2 of tissue from the cerebral cortex of the guinea pig and (2) the stimulation by 10 micron-noradrenaline and by 1.0nM-cyclic AMP of the phospholipase A2-acylation system of isolated synaptic membranes.


1979 ◽  
Vol 57 (6) ◽  
pp. 541-546 ◽  
Author(s):  
H. L. Cailla ◽  
H. Sarles ◽  
M. V. Singer

The secretion of cyclic AMP, cyclic GMP, protein, calcium, and bicarbonate in the pancreatic juice of three nonanesthetized dogs with chronic gastric and duodenal Thomas cannulae has been studied. Intravenous infusions of increasing doses of cholecystokinin–pancreozymin (CCK) (1.5, 3, 6, 12, 24 Crick Harper-Raper (CHR) U kg−1 h−1) were administered together with a continuous submaximal dose of secretin (1 clinical unit (CU) kg−1 h−1). Doubling CCK doses every 45 min induced a parallel increase in the output of both cyclic nucleotides. Cyclic AMP output peaked at between 15 and 30 min for 3 and 6 U kg−1 h−1 of CCK and later for 12 and 24 U kg−1 h−1 of CCK whereas cyclic GMP output increased more constantly. Calcium output followed a pattern similar to that of cyclic GMP secretion. Flow rate and protein output attained their peaks at between 30 and 45 min. A strong linear correlation was found between the quantities of cyclic AMP, cyclic GMP, and the quantities of protein secreted in response to each CCK dose. This study demonstrates the presence of cyclic GMP in the canine pancreatic juice and the dose-dependent stimulation of the secretion of cyclic GMP and cyclic AMP by CCK in the presence of secretin.


1975 ◽  
Vol 148 (2) ◽  
pp. 197-208 ◽  
Author(s):  
R J Gullis ◽  
C E Rowe

1. The distribution of the hydrolyses of phosphatidylcholine by phospholipase A2 and phospholipase A1, and the hydrolysis of lysophosphatidylcholine by lysophospholipase, in subcellular and subsynaptosomal fractions of cerebral cortices of guinea-pig brain, was determined. 2. Noradrenaline stimulated hydrolysis by phospholipase A2 in whole synaptosomes, synaptic membranes and fractions containing synaptic vesicles. 3. Stimulation of hydrolysis by phospholipase A2 in synaptic membranes by noradrenaline was enhanced by CaCl2, and by a mixture of ATP and MgCl2. The optimum concentration of CaCl2, in the presence of ATP and MgCl2, for stimulation by 10 muM-noradrenaline was in the range 1-10muM. The optimum concentration for ATP-2MgCl2 in the presence of 1 muM-CaCl2 was in the range 0.1-1mM. 4. Hydrolysis by phospholipase A2 of synaptic membranes was also stimulated by acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine), histamine, psi-aminobutyric acid, glutamic acid and aspartic acid. With appropriate concentrations of cofactors, sigmoidal dose-response curves were obtained, half-maximum stimulations being obtained with concentrations of stimulant in the range 0.1-1muM. 5. Taurine also stimulated hydrolysis of phosphatidylcholine by phospholipase A2. There were only slight stimulations with methylamine, ethylenediamine or spermidine. No stimulation was obtained with glucagon.


1975 ◽  
Vol 148 (3) ◽  
pp. 557-565 ◽  
Author(s):  
R J Gullis ◽  
C E Rowe

Noradrenaline stimulated the incorporation of oleate into choline glycerophospholipids of guinea-pig brain synaptic membranes incubated in sodium phosphate buffer. In the presence of 1 mm-NaF, noradrenaline stimulated the incorporation of oleate into the choline glycerophospholipids, phosphatidylinositol, ethanolamine glycerophospholipids, phosphatidylserine and phosphatidic acid of synaptic membranes incubated in 10 mm-Tris-HCl buffer. In Tris-CHl containing 1 mm-NaF, stimulation of incorporation of oleate into choline glycerophospholipids by noradrenaline was enhanced by ATP, CaCl2, MgCl2 and CoA plus dithiothreitol. The optimum concentration of CaCl2 for stimulation by 10 mum-noradrenaline was 10 mum. In the presence of CaCl2, the optimum concentration of ATP-2MgCl2 was in the range 0.1-1 mm. Acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine, histamine and gamma-aminobutyric acid also stimulated the incorporation of oleate into choline glycerophospholipids of synaptic membranes. Sigmoidal dose-response curves were obtained, similar to those obtained previously for stimulation by the same agonists of the hydrolysis of phosphatidylcholine by phospholipase A2 (Gullis & Rowe, 1975a). The initial rate of transfer of oleate from oleoyl-CoA to choline glycerophospholipid was similar to the initial rate of transfer from oleate-albumin, stimulated by noradrenaline. Transfer of oleate from oleoyl-CoA was not appreciably stimulated by noradrenaline, but was stimulated by ATP and MgCl2.


1980 ◽  
Vol 239 (5) ◽  
pp. F478-F485 ◽  
Author(s):  
L. S. Costanzo ◽  
E. E. Windhager

Tubular microperfusion experiments were performed in rats to examine the effects of thyroparathyroidectomy (TPTX), parathyroid hormone (PTH), antidiuretic hormone (ADH), and cyclic AMP (cAMP) on distal tubular Ca, Na, and water reabsorption. TPTX caused a significant decrease in the Ca reabsorptive rate as compared to intact animals. PTH (5 U/kg; 2 U x kg-1 x h-1) replacement in TPTX animals restored Ca transport to control levels. Application of either cAMP (10(-3) M) or 8-(p-chlorophenylthio)-cyclic 3',5'-adenosine monophosphate (10(-5) M) to the surface of the kidney caused a stimulation of Ca reabsorption similar to that produced by PTH. Neither TPTX nor PTH changed Na or water reabsorption significantly, whereas the cyclic nucleotides increased both of these parameters. These later actions of cAMP duplicated effects of ADH observed in these distal tubules.


1977 ◽  
Vol 84 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Mario A. Pisarev ◽  
Diana L. Kleiman de Pisarev

ABSTRACT Thyrotrophin (TSH) regulates the biosynthesis of thyroid protein and RNA. This action is mediated by adenylate cyclase and cyclic AMP. In the present study the action of cyclic GMP and cyclic CMP was investigated in beef slices. Both cyclic AMP and cyclic GMP significantly increased the incorporation of [3H]uridine into RNA. These effects were blocked by actinomycin D, suggesting that their action is located at a preor at a transcriptional step. The PCA soluble fraction radioactivity followed in parallel with the variations observed in the RNA fraction, supporting the view that cyclic nucleotides may regulate RNA by modulating the nucleotide precursors pool. Cyclic CMP in concentrations between 0.35 to 1.5 mm progressively decreased the RNA labelling, and the values of the PCA soluble radioactivity again followed those of RNA. Furthermore, cyclic CMP also blocked the in vitro stimulatory action of cyclic AMP on the incorporation of [3H]leucine into protein, and of [3H]uridine into RNA. The present results provide the first information on the action of cyclic AMP on RNA synthesis and suggest that negative signals may also play a part in the regulation of thyroid function.


1975 ◽  
Vol 141 (1) ◽  
pp. 97-111 ◽  
Author(s):  
J Watson

The intracellular ratio of adenosine 3',5'-cyclic monophosphate (cyclic AMP) to guanosine 3',5'-cyclic monophosphate (cyclic GMP) may control the developmental pathway followed by antibody-forming cell (AFC) precursors. The evidence for this is derived from several different types of experiments. First lipopolysaccharide (LPS) which is mitogenic for B lymphocytes, stimulates rapid, transient changes in intracellular levels of cyclic GMP but not cyclic AMP when added to mouse spleen cultures. Cyclic GMP itself stimulates DNA synthesis in these cultures, suggesting that the intracellular changes in cyclic GMP levels are involved in the mitogenic signal delivered by LPS to cells. The absolute amounts of cyclic nucleotides may vary widely in different cells under various conditions, however, the intracellular ratio of cyclic AMP to cyclic GMP is always high in nondividing cells and low in dividing cells. AFC precursors appear to respond to antigen in the absence of T-cell activity by inactivation (1-7). In the response to antigen in the presence of specific T cells, precursor cells proliferate and mature to AFC. Raising intracellular levels of cyclic AMP inhibits cell proliferation and leads to precursor cell inactivation (14, 15). It is suggested that the interaction of antigen with immunoglobulin receptors on the surface of precursors cells leads to the stimulation of adenylate cyclase activity and initiates the inactivation pathway. Since cyclic GMP stimulates immune responses in T-cell-depleted cultures (14, 15) and increasing cyclic GMP levels appear to be involved in the delivery of a mitogenic signal to cells, it is suggested that T-helper cells deliver a signal to precursor cells via the stimulation of guanylate cyclase to initiate the inductive pathway. It is suggested that it is the intracellular ratio of cyclic AMP to cyclic GMP that regulates the fate of precursor cells, not the absolute level of one cyclic nucleotide.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document