scholarly journals Studies on partially reduced mammalian cytochrome oxidase reactions with ferrocytochrome c

1976 ◽  
Vol 157 (3) ◽  
pp. 591-598 ◽  
Author(s):  
C Greenwood ◽  
T Brittain

The kinetics of the electron-transfer process which occurs between ferrocytochrome c and partially reduced mammalian cytochrome oxidase were studied by the rapid spectrophotometric techniques of stopped flow and temperature jump. Stopped-flow experiments showed initial very fast extinction changes at 605 nm and at 563 nm, indicating the simultaneous reduction of cytochrome a and oxidation of ferrocytochrome c. During this ‘burst’ phase, say the first 50 ms after mixing, it was invariably found that more cytochrome c had been oxidized than cytochrome a had been reduced. This discrepancy in electron equivalents may be accounted for by the rapid reduction of another redox site in the enzyme, possibly that associated with the extinction changes observed at 830 nm. During the incubation period in which the partially reduced oxidase was prepared, the rate of reduction of cytochrome a by ferrocytochrome c, at constant reactant concentrations, decreased with time. Temperature-jump experiments showed the presence of two relaxation processes. The faster of the two phases was assigned to the electron-transfer reaction between cytochrome c and cytochrome a. A study of the concentration-dependence of the reciprocal relaxation time for this phase yielded a rate constant of 9 X 10(6)M-1-s-1 for the electron transfer from cytochrome c to cytochrome a, and a value of 8.5 X 10(6)M-1-s-1 for the reverse reaction. The equilibrium constant for the electron-transfer reaction is therefore close to unity. The slower phase has been interpreted as signalling the transfer of electrons between cytochrome a and another redox site within the oxidase molecule.

1974 ◽  
Vol 137 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Maurizio Brunori ◽  
Colin Greenwood ◽  
Michael T. Wilson

Temperature-jump studies on the electron-transfer reaction between azurin and cytochrome c-551 clearly reveal two chemical relaxations. The amplitudes of these relaxation processes have identical spectral distributions, but the relaxation times show different dependences on the reactant concentrations. These findings are discussed in terms of possible models.


1975 ◽  
Vol 151 (1) ◽  
pp. 185-188 ◽  
Author(s):  
M Brunori ◽  
S R Parr ◽  
C Greenwood ◽  
M T Wilson

The electron-transfer reaction between azurin and the cytochrome oxidase from Pseudomonas aeruginosa was investigated by temperature-jump relaxation in the absence of O2 and in the presence of CO. The results show that: (i) reduced azurin exists in two forms in equilibrium, only one of which is capable of exchanging electrons with the Pseudomonas cytochrome oxidase, in agreement with M. T. Wilson, C. Greenwood, M. Brunori & E. Antonini (1975) (Biochem. J. 145, 449-457); (ii) the electron transfer between azurin and Pseudomonas cytochrome oxidase occurs within a molecular complex of the two proteins; this internal transfer becomes rate-limiting at high reagent concentrations.


1993 ◽  
Vol 294 (1) ◽  
pp. 211-213 ◽  
Author(s):  
H B Brooks ◽  
V L Davidson

The most commonly used methods for analysis of stopped-flow kinetic data require performing a series of measurements in which one reactant is varied at concentrations significantly greater than the concentration of the other reactant. For enzyme-catalysed reactions this may not be possible, because the dissociation constants for the enzyme-substrate complex are often of the same order of magnitude as the high concentrations of enzyme that must frequently be used in stopped-flow studies. An alternative method of data analysis is presented which allows the determination of microscopic rate constants from initial rates of stopped-flow kinetic data in which substrate is varied in a range of concentrations approximately the same as the enzyme. This method also provides a simple and accurate method for determining k4, the rate of the reverse reaction. This method has been used to describe a physiological electron transfer reaction between a quinoprotein, methylamine dehydrogenase, and a copper protein, amicyanin. At 20 degrees C, the rate of the electron-transfer reaction from methylamine dehydrogenase to amicyanin was 24 s-1, and the dissociation constant for complex-formation was 1.9 microM.


Sign in / Sign up

Export Citation Format

Share Document