scholarly journals Possible multiple binding sites for o-aminophenol on uridine diphosphate glucuronyltransferase

1977 ◽  
Vol 163 (1) ◽  
pp. 125-131 ◽  
Author(s):  
R D Howland ◽  
L D Bohm

1. Hepatic microsomal UDP-glucuronyltransferase (EC 2.4.1.17) derived from either weanling or adult rats exhibits three pH optima, at pH 5.4, 7.2 and 9.2, when o-aminophenol is the acceptor substrate, whereas p-nitrophenol is the acceptor substrate only on pH optimum is observed, at pH 5.4.2. Prior treatment of rats of either age with 3-methylcholanthrene results in a 2-3-fold increase in o-aminophenol conjugation at pH 5.4 and a 6-9-fold increase at pH 9.2. At pH 7.2, the induced enzyme is 2 to 3 times more active towards o-aminophenol than the control enzyme, but no pH optimum is demonstrable. 3. o-Aminophenol conjugation at pH 5.4 and 9.2 is inhibited competitively by both p-nitrophenol and p-nitrophenyl glucuronide, suggesting that the two phenolic aglycones share the same binding site. At pH 7.2, however, p-nitrophenyl glucuronide does not inhibit o-aminophenol conjugation, suggesting that the binding site at this pH is not shared by the two phenols. These data are consistent with the existence of more than one binding site for o-aminophenol on UDP-glucuronyltransferase.

1993 ◽  
Vol 58 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Imad Al-Bala'a ◽  
Richard D. Bates

The role of more than one binding site on a nitroxide free radical in magnetic resonance determinations of the properties of the complex formed with a hydrogen donor is examined. The expression that relates observed hyperfine couplings in EPR spectra to complex formation constants and concentrations of each species in solution becomes much more complex when multiple binding sites are present, but reduces to a simpler form when binding at the two sites occurs independently and the binding at the non-nitroxide site does not produce significant differences in the hyperfine coupling constant in the complexed radical. Effects on studies of hydrogen bonding between multiple binding site nitroxides and hydrogen donor solvent molecules by other magnetic resonance methods are potentially more extreme.


2018 ◽  
Author(s):  
Nathalie Lagarde ◽  
Alessandra Carbone ◽  
Sophie Sacquin-Mora

AbstractProtein-protein interactions control a large range of biological processes and their identification is essential to understand the underlying biological mechanisms. To complement experimental approaches, in silico methods are available to investigate protein-protein interactions. Cross-docking methods, in particular, can be used to predict protein binding sites. However, proteins can interact with numerous partners and can present multiple binding sites on their surface, which may alter the binding site prediction quality. We evaluate the binding site predictions obtained using complete cross-docking simulations of 358 proteins with two different scoring schemes accounting for multiple binding sites. Despite overall good binding site prediction performances, 68 cases were still associated with very low prediction quality, presenting individual area under the specificity-sensitivity ROC curve (AUC) values below the random AUC threshold of 0.5, since cross-docking calculations can lead to the identification of alternate protein binding sites (that are different from the reference experimental sites). For the large majority of these proteins, we show that the predicted alternate binding sites correspond to interaction sites with hidden partners, i.e. partners not included in the original cross-docking dataset. Among those new partners, we find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites on their surface, we investigated the structural determinants associated with the binding sites the most targeted by the docking partners.AbbreviationsANOVA: ANalysis Of Variance; AUC: Area Under the Curve; Best Interface: BI; CAPRI: Critical Assessment of Prediction of Interactions; CC-D: Complete Cross-Docking; DNA: DesoxyriboNucleic Acid; FDR: False Discovery Rate; FRIres(type): Fraction of each Residue type in the Interface; FP: False Positives; GI: Global Interface; HCMD: Help Cure Muscular Dystrophy; JET: Joint Evolutionary Tree; MAXDo: Molecular Association via Cross Docking; NAI: Nucleic Acid Interface; NPV: Negative Predicted Value; PDB: Protein Data Bank; PIP: Protein Interface Propensity; PiQSi: Protein Quaternary Structure investigation; PPIs: Protein-Protein Interactions; PPV: Positive Predicted Value; Prec.: Precision; PrimI: Primary Interface; RNA: RiboNucleic Acid; ROC: Receiver Operating Characteristic; SecI: Secondary Interface; Sen.: Sensitivity; Spe.: Specificity; TN: True Negatives; TP: True Positives; WCG: World Community Grid.


1993 ◽  
Vol 118 (5) ◽  
pp. 609-612 ◽  
Author(s):  
Sylvia M. Blankenship ◽  
Edward C. Sisler

Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C50 values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 μl ethylene/liter-1, respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of 14C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.


2019 ◽  
Vol 19 (24) ◽  
pp. 2239-2253 ◽  
Author(s):  
Paul J. Goldsmith

The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.


The Analyst ◽  
2017 ◽  
Vol 142 (2) ◽  
pp. 302-309 ◽  
Author(s):  
Yanxia Li ◽  
Yiting Chen ◽  
Lu Huang ◽  
BenYong Lou ◽  
Guonan Chen

A kind of protein imprinted over magnetic Fe3O4@Au multifunctional nanoparticles (NPs) with multiple binding sites was synthesized and investigated.


Sign in / Sign up

Export Citation Format

Share Document