scholarly journals A comparison of methods for the measurement of protein turnover in vivo

1979 ◽  
Vol 184 (2) ◽  
pp. 473-476 ◽  
Author(s):  
M L MacDonald ◽  
S L Augustine ◽  
T L Burk ◽  
R W Swick

Steady-state rates of turnover of two single proteins were measured in vivo by two independent methods. The fractional rate of synthesis of liver ornithine aminotransferase, measured by a continuous infusion of L-[2,6-3H]tyrosine, was 0.42 day-1, whereas in the same animals the fractional rate of degradation measured by loss of radioactivity from amino acids labelled via [14C]bicarbonate was 0.40 day-1. The agreement between methods confirms the reliability of each method for the study of hepatic protein turnover. In contrast, [14C]bicarbonate-labelled amino acids are extensively reutilized in muscle, and are therefore unsuitable for measuring rates of muscle protein breakdown.

1980 ◽  
Vol 238 (1) ◽  
pp. E46-E52
Author(s):  
S. L. Augustine ◽  
R. W. Swick

The recovery of approximately 40% of the total liver protein during the first day after partial hepatectomy was shown to be due to the near cessation of protein breakdown rather than to an increase in protein synthesis. The decrease in degradation of total protein was less if rats were adrenalectomized or protein-depleted prior to partial hepatectomy. The effect of these treatments originally suggested that changes in free amino acid levels in liver might be related to the rate of protein degradation. However, no correlation was found between levels of total free amino acids and rates of breakdown. Measurements of individual amino acids during liver regeneration suggested that levels of free methionine and phenylalanine, amino acids that have been found to lower rates of protein degradation in vitro, are not correlated with rates of breakdown in vivo. The difference between the fractional rate of ornithine aminotransferase degradation (0.68/day and 0.28/day in sham-hepatectomized and partially hepatectomized rats, respectively) was sufficient to account for the higher level of this protein 3 days after surgery in the latter group.


1981 ◽  
Vol 194 (3) ◽  
pp. 811-819 ◽  
Author(s):  
M L MacDonald ◽  
R W Swick

Rates of growth and protein turnover in the breast muscle of young chicks were measured in order to assess the roles of protein synthesis and degradation in the regulation of muscle mass. Rates of protein synthesis were measured in vivo by injecting a massive dose of L-[1-14C]valine, and rates of protein degradation were estimated as the difference between the synthesis rate and the growth rate of muscle protein. In chicks fed on a control diet for up to 7 weeks of age, the fractional rate of synthesis decreased from 1 to 2 weeks of age and then changed insignificantly from 2 to 7 weeks of age, whereas DNA activity was constant for 1 to 7 weeks. When 4-week-old chicks were fed on a protein-free diet for 17 days, the total amount of breast-muscle protein synthesized and degraded per day and the amount of protein synthesized per unit of DNA decreased. Protein was lost owing to a greater decrease in the rate of protein synthesis, as a result of the loss of RNA and a lowered RNA activity. When depleted chicks were re-fed the control diet, rapid growth was achieved by a doubling of the fractional synthesis rate by 2 days. Initially, this was a result of increased RNA activity; by 5 days, the RNA/DNA ratio also increased. There was no evidence of a decrease in the fractional degradation rate during re-feeding. These results indicate that dietary-protein depletion and repletion cause changes in breast-muscle protein mass primarily through changes in the rate of protein synthesis.


2013 ◽  
Vol 304 (8) ◽  
pp. E895-E907 ◽  
Author(s):  
Lars Holm ◽  
Bruce O'Rourke ◽  
David Ebenstein ◽  
Michael J. Toth ◽  
Rasmus Bechshoeft ◽  
...  

A method to determine the rate of protein breakdown in individual proteins was developed and tested in rats and confirmed in humans, using administration of deuterium oxide and incorporation of the deuterium into alanine that was subsequently incorporated into body proteins. Measurement of the fractional breakdown rate of proteins was determined from the rate of disappearance of deuterated alanine from the proteins. The rate of disappearance of deuterated alanine from the proteins was calculated using an exponential decay, giving the fractional breakdown rate (FBR) of the proteins. The applicability of this protein-specific FBR approach is suitable for human in vivo experimentation. The labeling period of deuterium oxide administration is dependent on the turnover rate of the protein of interest.


1980 ◽  
Vol 44 (2) ◽  
pp. 129-140 ◽  
Author(s):  
C. I. Harris ◽  
G. Milne

1. The validity of the urinary excretion of Nτ-methyl histidine (Nτ-MH) in sheep as a measure of the breakdown of muscle protein in vivo was assessed from the urinary recovery of radioactivity following the intravenous administration of Nτ-[14CH3]methylhistidine.2. Recoveries of radioactivity in urine from animals of 4 weeks to 7 years of age were incomplete in 7 d but progressively increased with the age of the animal, becoming almost quantitative (90%) in older animals after recovery for 3 weeks.3. The incomplete urinary recoveries were not due to partial excretion of Nτ-MH in faeces or its oxidation and elimination in expired gases but were related to the presence in muscle of a pool of non-protein-bound Nτ-MH which was several times larger than the expected daily urinary excretion.4. This pool in newly accreted muscle tissue was maintained by retention of some of the Nτ-MH released by breakdown of muscle protein. Hence, only a proportion of the Nτ-MH released from protein breakdown was available for excretion. This proportion increased with the age of the animal and was probably the main determinant of the improved recoveries of radioactivity obtained in urine from older animals.5. The non-protein-bound Nτ-MH in muscle consisted of free Nτ-MH and a dipeptide containing Nτ-MH, the latter comprising on average approximately 82% of the total non-protein-bound Nτ-MH in muscle. This proportion did not change appreciably with the age of the animal.6. The dipeptide appeared to be synthesized in muscle from free Nτ-MH and was not a terminal product of protein breakdown.7. The results show that urinary excretion of Nτ-MH is not a reliable index of muscle protein breakdown in sheep.


1996 ◽  
Vol 28 (5) ◽  
pp. 361-366 ◽  
Author(s):  
J. Fujita ◽  
T. Tsujinaka ◽  
C. Ebisui ◽  
M. Yano ◽  
H. Shiozaki ◽  
...  

1986 ◽  
Vol 250 (2) ◽  
pp. E114-E120 ◽  
Author(s):  
A. J. Morton ◽  
D. F. Goldspink

The adaptive growth and protein turnover of the rat uterus were studied during the 21 days of gestation and up to 3 days after parturition. Despite large increases (13-fold) in uterine size during gestation, the fractional rate of protein synthesis (measured in vivo) remained unchanged when compared with nonpregnant tissue values of 44 +/- 5%/day. However, decreases were found in the rate of protein breakdown after implantation (i.e., 75% on day 7 and 28% on day 11) and in the activity of cathepsin D (i.e., 33 and 85% on days 8 and 16 of gestation). Changes in the degradative processes would therefore appear to be primarily responsible for the massive uterine growth during pregnancy. In contrast to the uterus the fractional rates of synthesis in the placenta and fetus progressively decreased during gestation. After parturition the uterus rapidly returned to its normal size by a combination of cellular atrophy and cell loss. After 2 days, a complementary decrease in the fractional rate of synthesis (30%) and an increase in protein degradation (2-fold) explained the process of involution.


1997 ◽  
Vol 273 (6) ◽  
pp. E1149-E1157 ◽  
Author(s):  
Violeta Botbol ◽  
Oscar A. Scornik

Bestatin, an aminopeptidase inhibitor, permits the degradation of cellular proteins to di- and tripeptides but interferes with the further breakdown of these peptides to amino acids. We propose to measure instant rates of protein degradation in skeletal muscles of intact mice by the accumulation of bestatin-induced intermediates. Muscle protein was labeled by injection ofl-[guanidino-14C]arginine; 3 days later, maximum accumulation of intermediates was measured in abdominal wall muscles 10 min after the intravenous injection of 5 mg of bestatin. The peptides were partially purified and hydrolyzed in 6 N HCl, and the radioactivity in peptide-derived arginine was determined, after conversion to14CO2by treatment with arginase and urease. The measurement of bestatin-induced intermediates provides a unique tool for studying acute changes in muscle protein turnover in live mice. We observed a 62% increase in muscle protein breakdown after a 16-h fast, which was reversed by refeeding for 3.5 h, and a 38% increase after 3 days of protein depletion.


2009 ◽  
Vol 106 (5) ◽  
pp. 1692-1701 ◽  
Author(s):  
Nicholas A. Burd ◽  
Jason E. Tang ◽  
Daniel R. Moore ◽  
Stuart M. Phillips

Muscle contraction during exercise, whether resistive or endurance in nature, has profound affects on muscle protein turnover that can persist for up to 72 h. It is well established that feeding during the postexercise period is required to bring about a positive net protein balance (muscle protein synthesis − muscle protein breakdown). There is mounting evidence that the timing of ingestion and the protein source during recovery independently regulate the protein synthetic response and influence the extent of muscle hypertrophy. Minor differences in muscle protein turnover appear to exist in young men and women; however, with aging there may be more substantial sex-based differences in response to both feeding and resistance exercise. The recognition of anabolic signaling pathways and molecules are also enhancing our understanding of the regulation of protein turnover following exercise perturbations. In this review we summarize the current understanding of muscle protein turnover in response to exercise and feeding and highlight potential sex-based dimorphisms. Furthermore, we examine the underlying anabolic signaling pathways and molecules that regulate these processes.


1987 ◽  
Vol 72 (4) ◽  
pp. 503-509 ◽  
Author(s):  
J. N. A. Gibson ◽  
D. Halliday ◽  
W. L. Morrison ◽  
P. J. Stoward ◽  
G. A. Hornsby ◽  
...  

1. Quadriceps muscle protein turnover was assessed in the post-absorptive state in six men immediately after the end of unilateral leg immobilization (37 ± 4 days) in a plaster cast after tibial fracture. A primed-constant intravenous infusion of l-[1-13C]leucine was administered over 7 h. Quadriceps needle biopsies, taken bilaterally at the end of the infusion, were analysed for muscle protein leucine enrichment with 13C. 2. Quadriceps muscle protein synthetic rate, calculated from the fractional incorporation of [13C]leucine into protein compared with the average enrichment of blood α-ketoisocaproate, was 0.046 ±0.012%/h in the uninjured leg, but was only 0.034 ±0.007%/h in the quadriceps of the previously fractured leg (P > 0.05, means ± sd). 3. Muscle RNA activity (i.e. protein synthetic rate per RNA) fell from 0.27 ±0.08 μg of protein synthesized h−1 μg−1 of RNA in the control leg to 0.14 ±0.03 μg of protein synthesized h−1 μg−1 of RNA in the immobilized leg (P > 0.02). 4. Immobilization was associated with a significant atrophy of type I muscle fibres (mean diameter 69.5 ±21 μm immobilized, 81.1 ±18 μm control, P > 0.05), but no significant change occurred in type II fibre diameter. Mean quadriceps fibre volume calculated from the values for fibre diameter and percentage of each fibre type, was smaller in the injured leg by 10.6%; this value was near to the calculated difference in muscle thigh volume (calculated from thigh circumference and skin-fold thickness) which was less by 8.3%. 5. From estimated mean daily values for quadriceps protein synthetic rate (1.65 ±0.44%/day in the control legs and 1.22±0.28%/day in the injured legs) and change in fibre volume, mean daily muscle protein breakdown rates were calculated as 1.65%/ day and 1.53%/day respectively, suggesting that muscle protein breakdown was not enhanced and may have fallen. 6. The results suggest a decrease in muscle protein turnover during limb immobilization in man, with the decrement in muscle mass being due mainly to a substantial (25%) depression of muscle protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document