scholarly journals Size heterogeneity of rat pituitary prolactin

1980 ◽  
Vol 189 (3) ◽  
pp. 605-614 ◽  
Author(s):  
M Wallis ◽  
M Daniels ◽  
S A Ellis

The occurrence of multiple forms of rat prolactin with different molecular weights (size heterogeneity) was studied with anterior pituitary extracts, purified rat prolactin and 125I-labelled rat prolactin. In each case, three main forms of the hormone were detected by gel filtration on Sephadex G-100: a major one (80–90%) corresponding to monomeric prolactin (mol.wt. 22000–25000), a peak (8–20%) that could be a dimer (mol.wt. 45000–50000) and a small quantity (1–5%) of a component of much greater molecular weight. On freezing and thawing of 125I-labelled rat prolactin, there was little interconversion of monomer and ‘dimer’ peaks, but both were converted substantially to very high-molecular-weight material. All three peaks of 125I-labelled rat prolactin could be precipitated by anti-(rat prolactin) serum and all three gave similar patterns of radioactive peptides after digestion with chymotrypsin followed by high-voltage paper electrophoresis. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the monomer peak of 125I-labelled prolactin migrated as a single component of mol.wt. 22000, the very high-molecular-weight peak largely dissociated to a component running in the same position as the monomer, and the ‘dimer’ peak migrated partly as a component of mol.wt. 45000 and partly as a component migrating with monomeric prolactin. No treatment was found that could dissociate the ‘dimer’ peak completely to monomeric prolactin.

1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1980 ◽  
Vol 30 (3) ◽  
pp. 642-648
Author(s):  
J. T. Poolman ◽  
S. De Marie ◽  
H. C. Zanen

Analysis of major outer membrane protein (MOMP) profiles of various meningococci by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of 0 to 2 low-molecular-weight, heat-modifiable MOMPs (molecular weight, 25,000 to 32,000) and 1 to 3 high-molecular-weight MOMPs (molecular weight, 32,000 to 46,000). Heat modifiability was investigated by comparing MOMP profiles after heating in SDS solutions at 100°C for 5 min or at 40°C for 1 h. Low-molecular-weight MOMPs shifted to higher apparent molecular weights after being heated at 100°C. Heat modifiability of high-molecular-weight MOMPs varied among strains; whenever modified these proteins shifted to lower apparent molecular weights after complete denaturation. Variability of low-molecular-weight, heat-modifiable MOMPs was demonstrated when MOMP profiles were compared of (i) isolates from index cases and associated cases and carriers among contacts, (ii) different isolates from the same individual, and (iii) isolates from a small epidemic caused by serogroup W-135. In some cases high-molecular-weight MOMPs revealed quantitative differences among related strains. The observed variability and quantitative differences indicate that MOMP serotyping and typing on the basis of SDS-PAGE profiles (PAGE typing) need careful reevaluation.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1980 ◽  
Vol 189 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Yoav Ben-Yoseph ◽  
Melinda Hungerford ◽  
Henry L. Nadler

Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.


1996 ◽  
Vol 51 (5-6) ◽  
pp. 342-354 ◽  
Author(s):  
Beate Nicolaus ◽  
Yukiharu Sato ◽  
Ko Wakabayashi ◽  
Peter Böger

Abstract Thiadiazolidine-converting activity (isomerase), detected in a 45-75% ammonium sulfate precipitate from corn seedlings extracts, was purified by chromatography on hydroxyapatite and by anion exchange on Mono Q Sepharose. Two fractions 1 and 2 with isomerase activity were separated on Mono Q by combination of a stepwise elution and continuous salt gradient; fraction 2 eluting at higher salt concentrations was found the most active. Total activity could be enhanced by treatment of seedlings with naphthalic anhydride. Both fractions containing isomerase activity were further purified by glutathione-(GSH) agarose affinity chromatography and characterized by their specificity for different thiadiazolidines. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration revealed that the isomerase of fraction 2 consists either of a homodimer or a heterodimer of two proteins with apparent molecular weights of 28 and 31 kDa, respectively. The protein pattern as well as the strict dependence of activity on thiol groups (GSH or dithiothreitol) suggested a glutathione Stransferase (GST) catalyzing the thiadiazolidine conversion. Further evidence was obtained by measuring reactions specific for GSTs in both purified fractions, namely the conjugating activity for l-chloro-2,4-dinitrobenzene (CDNB ). atrazine and metazachlor. While no atrazine turnover was found, metazachlor and CDNB conjugation occurred rapidly. Both fractions differed in their activities to several GST substrates with fraction 2 being more effective in metazachlor but less active in C DN B conjugation. Inhibitors specific for GST-catalyzed reactions also inhibited thiadiazolidine conversion confirming that isomerizing activity is attributed to a GST form. We conclude that GST isoforms with different affinities towards thiadiazolidines have been isolated. CDNB activity, molecular weight, the protein pattern on SDS-PAGE as well as the amino acid sequence of one of its polypeptides suggest that fraction 1, less active in thiadiazolidine isomerization, is identical to GST I. The second peptide of this fraction was resistant to Edman degradation probably due to N-terminal blockage. The properties of the high isomerase activity found in fraction 2 are in agreement with characteristics of a GST previously termed as isoform II.


1999 ◽  
Vol 65 (8) ◽  
pp. 3298-3303 ◽  
Author(s):  
Alexander M. Blinkovsky ◽  
Tony Byun ◽  
Kimberly M. Brown ◽  
Elizabeth J. Golightly

ABSTRACT A novel serine carboxypeptidase (EC 3.4.16.1 ) was found in anAspergillus oryzae fermentation broth and was purified to homogeneity. This enzyme has a molecular weight of ca. 67,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its specific activity is 21 U/mg for carbobenzoxy (Z)-Ala-Glu at pH 4.5 and 25°C. It has a ratio of bimolecular constants for Z-Ala-Lys and Z-Ala-Phe of 3.75. Optimal enzyme activity occurs at pH 4 to 4.5 and 58 to 60°C for Z-Ala-Ile. The N terminus of this carboxypeptidase is blocked. Internal fragments, obtained by cyanogen bromide digestion, were sequenced. PCR primers were then made based on the peptide sequence information, and the full-length gene sequence was obtained. An expression vector that contained the recombinant carboxypeptidase gene was used to transform aFusarium venenatum host strain. The transformed strain ofF. venenatum expressed an active recombinant carboxypeptidase. In F. venenatum, the recombinant carboxypeptidase produced two bands which had molecular weights greater than the molecular weight of the native carboxypeptidase from A. oryzae. Although the molecular weights of the native and recombinant enzymes differ, these enzymes have very similar kinetic parameters.


1978 ◽  
Vol 173 (2) ◽  
pp. 633-641 ◽  
Author(s):  
R K Craig ◽  
D McIlreavy ◽  
R L Hall

1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin.


1976 ◽  
Vol 159 (1) ◽  
pp. 181-184 ◽  
Author(s):  
N Paskin ◽  
R J Mayer

Fatty acid synthetase purified from the mammary gland of the rabbit has a mol. wt. of 968000 as determined by gel filtration. The enzyme gave one band, corresponding to a mol.wt. of approx. 35000, on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate and phenylmethanesulphonyl fluoride.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1268-1276 ◽  
Author(s):  
F van Iwaarden ◽  
PG de Groot ◽  
JJ Sixma ◽  
M Berrettini ◽  
BN Bouma

Abstract The presence of high-molecular weight (mol wt) kininogen was demonstrated in cultured human endothelial cells derived from the umbilical cord by immunofluorescence techniques. Cultured human endothelial cells contain 58 +/- 11 ng (n = 16) high-mol wt kininogen/10(6) cells as determined by an enzyme-linked immunosorbent assay (ELISA) specific for high-mol wt kininogen. High-mol wt kininogen was isolated from cultured human endothelial cells by immunoaffinity chromatography. Nonreduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that endothelial cell high-mol wt kininogen consisted of five protein bands with mol wts of 95,000, 85,000, 65,000, 46,000, and 30,000 daltons. Immunoblotting of the endothelial cell high-mol wt kininogen by using specific antisera against the heavy and light chain indicated that the 95,000-, 85,000-, and 65,000-dalton bands consisted of the heavy and light chain whereas the 46,000- and 30,000-dalton bands reacted only with the anti-light chain antiserum. Immunoprecipitation studies performed with lysed, metabolically labeled endothelial cells and monospecific antisera directed against high-mol wt kininogen suggested that high-mol wt kininogen is not synthesized by the endothelial cells. Endothelial cells cultured in high-mol wt kininogen-free medium did not contain high-mol wt kininogen. These studies indicate that endothelial cell high-mol wt kininogen was proteolytically cleaved in the culture medium and subsequently internalized by the endothelial cells. Binding and internalization studies performed with 125I-labeled, proteolytically cleaved, high-mol wt kininogen showed that endothelial cells can indeed bind and internalize proteolytically cleaved high-mol wt kininogen in a specific and saturable way.


Sign in / Sign up

Export Citation Format

Share Document