scholarly journals The interrelations between high- and low-molecular-weight forms of normal and mutant (Krabbe-disease) galactocerebrosidase

1980 ◽  
Vol 189 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Yoav Ben-Yoseph ◽  
Melinda Hungerford ◽  
Henry L. Nadler

Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.

1983 ◽  
Vol 65 (2) ◽  
pp. 117-120 ◽  
Author(s):  
Fumihiko Ikemoto ◽  
Victor J. Dzau ◽  
Edgar Haber ◽  
Kazuo Takaori ◽  
Kenjiro Yamamoto

1. Canine high-molecular-weight renin (mol. wt. 60 000) is believed to be a complex of renin (low-molecular-weight form, mol. wt. 40 000) and renin-binding substance. The immunocross-reactivity of high-molecular-weight renin and low-molecular-weight renin was demonstrated by using antibodies specific to low-molecular-weight renin. 2. Immunoaffinity chromatography with renin-specific antibodies coupled to Sepharose provided a simple and specific method for isolation of high-molecular-weight renin. High-molecular-weight renin with a specific activity of 137 600 ng of ANG I h−1 mg−1 of protein (19.6 Goldblatt units/mg of protein) was obtained. 3. This high-molecular-weight renin was stable in dithiothreitol (25 mmol/l), suggesting that disulphide bonds may not be involved in the binding mechanism between low-molecular-weight renin and renin-binding substance. 4. However, exposure to low pH (3.0) resulted in conversion of high-molecular-weight renin into the low-molecular-weight form.


1975 ◽  
Vol 49 (2) ◽  
pp. 149-156 ◽  
Author(s):  
P. J. Gaffney ◽  
D. A. Lane ◽  
M. Brasher

1. The factor XIII-mediated cross-linked α chains in fibrin have no effect on the nature of the fragments released during the solubilization of fibrin by plasmin. 2. Besides the known D dimer and E fragments solubilized during the lysis of cross-linked fibrin, other fragments have been observed on sodium dodecyl sulphate-polyacrylamide gel electrophoresis which have a molecular weight of about 135 000. After prolonged plasmin digestion, these fragments (U fragments) were no longer evident on the gels and the high-molecular-weight E antigen was absent. It is assumed that the E antigen was associated with the U fragments. These fragments also cross-reacted with an anti-D serum. 3. The U fragments have been tentatively presumed to be a factor XIII-mediated cross-linked D–E complex since they degrade only after prolonged degradation with plasmin. Whereas it is known that the fibrin D dimer fragment contains the cross-linked γ chain residues of the originating fibrin, the presumed covalent cross-linking of the D–E fragments has not been proved. 4. The presence of these high-molecular-weight fragments, containing the E antigen, in cross-linked human fibrin digests should be taken into account in the development of D dimer assays to monitor fibrin lysis in vivo.


1980 ◽  
Vol 30 (3) ◽  
pp. 642-648
Author(s):  
J. T. Poolman ◽  
S. De Marie ◽  
H. C. Zanen

Analysis of major outer membrane protein (MOMP) profiles of various meningococci by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of 0 to 2 low-molecular-weight, heat-modifiable MOMPs (molecular weight, 25,000 to 32,000) and 1 to 3 high-molecular-weight MOMPs (molecular weight, 32,000 to 46,000). Heat modifiability was investigated by comparing MOMP profiles after heating in SDS solutions at 100°C for 5 min or at 40°C for 1 h. Low-molecular-weight MOMPs shifted to higher apparent molecular weights after being heated at 100°C. Heat modifiability of high-molecular-weight MOMPs varied among strains; whenever modified these proteins shifted to lower apparent molecular weights after complete denaturation. Variability of low-molecular-weight, heat-modifiable MOMPs was demonstrated when MOMP profiles were compared of (i) isolates from index cases and associated cases and carriers among contacts, (ii) different isolates from the same individual, and (iii) isolates from a small epidemic caused by serogroup W-135. In some cases high-molecular-weight MOMPs revealed quantitative differences among related strains. The observed variability and quantitative differences indicate that MOMP serotyping and typing on the basis of SDS-PAGE profiles (PAGE typing) need careful reevaluation.


2014 ◽  
Vol 42 (2) ◽  
pp. 453-459 ◽  
Author(s):  
Asma MEDOURI ◽  
Inès BELLIL ◽  
Douadi KHELIFI

Aegilops geniculata Roth is an annual grass relative to cultivated wheat and is widely distributed in North Algeria. Endosperm storage proteins of wheat and its relatives, namely glutenins and gliadins, play an important role in dough properties and bread making quality. In the present study, the different alleles encoded at the four glutenin loci (Glu-M1, Glu-U1, Glu-M3 and Glu-U3) were identified from thirty five accessions of the tetraploid wild wheat A. geniculata collected in Algeria using Sodium dodecyl Sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE). At Glu-M1 and Glu-U1 loci, encoding high molecular weight glutenin subunits (HMW-GS) or A-subunits, 15 and 12 alleles were observed respectively, including one new subunit. B-Low molecular weight glutenin subunits zone (B-LMW-GS) displayed a far greater variation, as 28 and 25 alleles were identified at loci Glu-M3 and Glu-U3 respectively. Thirty two subunits patterns were revealed at the C subunits- zone and a total of thirty four patterns resulted from the genetic combination of the two zones (B- and C-zone). The wide range of glutenin subunits variation (high molecular weight glutenin subunits and low molecular weight glutenin subunits) in this species has the potential to enhance the genetic variability for improving the quality of wheat./span>


1977 ◽  
Vol 163 (3) ◽  
pp. 449-453 ◽  
Author(s):  
M B Baird ◽  
H R Massie ◽  
L S Birnbaum

Ultracentrifugation studies of purified mouse hepatic catalase revealed that 5-7% of the total material consists of a form with a higher molecular weight than the bulk of the catalase. The two components were separated by sucrose-gradient centrifugation. Polyacrylamide-gel electrophoresis (in borate buffer) demonstrated that high-molecular-weight catalase is enriched in a more slowly migrating component, and sodium dodecyl sulphate/polyacrylamide gel-electrophoresis demonstrated that the molecular weight of the subunits of the high-molecular-weight material is identical with that of the subunits of the major form. These results suggest that high-molecular-weight catalase consists of subunits that are not markedly distinct from those present in the normal catalase tetramer.


1973 ◽  
Vol 135 (1) ◽  
pp. 151-164 ◽  
Author(s):  
W. T. Perrie ◽  
L. B. Smillie ◽  
S. V. Perry

1. The low-molecular-weight components of myosin from rabbit skeletal muscle migrated as four bands on polyacrylamide-gel electrophoresis in 8m-urea but only as three in systems containing sodium dodecyl sulphate. The two bands of intermediate mobility in 8m-urea (Ml2 and Ml3) had identical mobilities in sodium dodecyl sulphate. 2. The isolation of pure samples of all four low-molecular-weight components by DEAE-Sephadex chromatography is described. 3. The amino acid compositions of components Ml2 and Ml3 were identical. Further analyses showed the presence of 1 mol of phosphate/18500g of component Ml2 and less than 10% of this amount in component Ml3. Neither light component contained ribose. 4. Alkaline phosphatase from Escherichia coli converted component Ml2 into Ml3. Incubation with crude preparations of phosphorylase b kinase or protein kinase in the presence of ATP converted component Ml3 into Ml2. 5. Phosphorylation of component Ml3 with the kinases isolated from skeletal muscle and [γ-32P]ATP gave incorporation of 32P only into component Ml2 whether whole myosin or separated low-molecular-weight components were used. 6. High-voltage electrophoresis at pH6.5 and pH1.8 of a chymotryptic digest of 32P-labelled component Ml2 yielded one major radioactive peptide containing serine phosphate. 7. The amino acid sequence of this peptide was shown to be: Arg-Ala-Ala-Ala-Glu-Gly-Gly-(Ser,Ser(P))-Asn-Val-Phe. This sequence shows no obvious similarity to the site phosphorylated in the conversion of phosphorylase b into phosphorylase a by phosphorylase b kinase. 8. Evidence suggests that in vivo all the 18500-molecular-weight light chain is in the phosphorylated form. The extent of dephosphorylation that occurred during myosin extraction depended on the conditions employed.


1981 ◽  
Vol 59 (5) ◽  
pp. 332-342 ◽  
Author(s):  
Hannah M. Phillips

Molecular sizes of fibrinogen (F) similar to FI, higher molecular weight form, and FII, lower molecular weight form, have been found by Lipinska and colleagues. A procedure has been developed to isolate for the first time each of the FI and FII forms of fibrinogen which are free of each other and of high molecular weight fibrin–fibrinogen complexes. This process involved removing the complexes by A-5 m chromatography. This chromatography also reduced a protein contaminant (X) and removed plasminogen. (NH4)2SO4 subfractionation at pH 5.9 was then done. A subtraction (16–18%) containing 90% FI and another (22–25% or 25–28%) containing 96% FII were obtained. Reprecipitation of the first 16–18% subfraction yielded a subfraction containing 97% FI. Sodium dodecyl sulfate (SDS) – polyacrylamide gel electrophoresis of FII revealed that it contains one intact Aα chain per (Bβ, γ)2. Clot opacity studies on FII suggested that the carboxyl terminal portion of the α chain of fibrin plays an important role in the lateral associations in fibrin polymerization.Also, the pattern of (NH4)2SO4 precipitation of the endogenous fibrin–fibrinogen complexes was studied. This revealed that the complexes precipitated mostly in the least soluble subfractions, but small amounts could be found in all subfractions. Examination of the complexes by SDS–polyacrylamide gel electrophoresis showed that most of the complexes could be dissociated to FI and FII. However, there were complexes which remained and these were found to be covalently cross-linked forms probably produced by factor XIII.


1990 ◽  
Vol 258 (2) ◽  
pp. C344-C351 ◽  
Author(s):  
H. Schmidt ◽  
G. Wegener

White skeletal muscle of crucian carp contains a single isoenzyme of glycogen phosphorylase, which was purified approximately 300-fold to a specific activity of approximately 13 mumol.min-1.mg protein-1 (assayed in the direction of glycogen breakdown at 25 degrees C). Tissue extracts of crucian muscle produced three distinct peaks of phosphorylase activity when separated on DEAE-Sephacel. Peaks 1 and 3 were identified, in terms of kinetic properties and by interconversion experiments, as phosphorylase b and a, respectively. Peak 2 was shown to be a phospho-dephospho hybrid. The three interconvertible forms of phosphorylase were purified and shown to be dimeric molecules at 20 degrees C. At 5 degrees C, a and the hybrid tended to form tetramers. The Mr of the subunit was estimated to be 96,400 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hybrid is kinetically homogeneous, and its kinetic properties are intermediate between those of b and a forms. The b, hybrid, and a forms of phosphorylase can be isolated from rapidly frozen muscle of crucian but in different proportions, depending on whether fish were anesthetized or forced to muscular activity for 20 s. Muscle of anesthetized crucian had 36, 36, and 28% of phosphorylase b, hybrid, and a forms, respectively, whereas the corresponding values for exercised fish were 12, 37, and 51%. Results suggest that three interconvertible forms of phosphorylase exist simultaneously in crucian muscle and that hybrid phosphorylase is active in contracting muscle in vivo.


1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


Sign in / Sign up

Export Citation Format

Share Document