scholarly journals Inactivation of aspartyl proteinases by butane-2,3-dione. Modification of tryptophan and tyrosine residues and evidence against reaction of arginine residues

1981 ◽  
Vol 193 (1) ◽  
pp. 55-65 ◽  
Author(s):  
J C Gripon ◽  
T Hofmann

Butane-2,3-dione inactivates the aspartyl proteinases from Penicillium roqueforti and Penicillium caseicolum, as well as pig pepsin, penicillopepsin and Rhizopus pepsin, at pH 6.0 in the presence of light but not in the dark. The inactivation is due to a photosensitized modification of tryptophan and tyrosine residues. In the dark none of the amino acid residues, not even arginine residues, is modified even after several days. In the light one arginine residue in pig pepsin is lost at a rate that is comparable with the rate of inactivation; however, the loss of the single arginine residue in the aspartyl proteinase of P. roqueforti and the second arginine residue of pig pepsin is slower than the loss of activity; penicillopepsin is devoid of arginine. Loss of most of the activity is accompanied by the following amino acid losses: P. roqueforti aspartyl proteinase, about two tryptophan and six tyrosine residues; penicillopepsin, about two tryptophan and three tyrosine residues; pig pepsin, about four tryptophan and most of the tyrosine residues. Modification of histidine residues was too slow to contribute to inactivation. None of the other residues, including half-cystine and methionine residues (when present), was modified even after prolonged incubation. The inactivation of P. roqueforti aspartyl proteinase and pig pepsin appears due to non-specific modification of several residues. With penicillopepsin, however, the reaction is more limited and initially affects only those tryptophan and tyrosine residues that lie in the active-site groove. In the presence of pepstatin the rate of inactivation is considerably diminished. After prolonged reaction a general structural breakdown occurs.

1975 ◽  
Vol 149 (3) ◽  
pp. 725-732 ◽  
Author(s):  
D G Redman

1. Three very similar proteins, each of approx. 120 amino acid residues but lacking phenylalanine and histidine, were isolated from wheat (Triticum aestivum) flour in sufficient quantities for further structural studies. 2. Each protein, after reduction and carboxymethylation, was cleaved at the three methionine residues with CNBr to give four major peptides, which were isolated. These peptides are suitable for future sequencing studies, as the sums of their amino acid compositions are in good agreement with those of the whole proteins. 3. The N- and C-terminal peptides were identified. 4. Evidence from amino acid analyses, N-terminal amino acids and electrophoretic mobilities of the peptides suggests a high degree of homology between the proteins. Definite differences in C-terminal amino acids and the number of glycine, alanine and arginine residues were found in the C-terminal peptides.


Biologia ◽  
2007 ◽  
Vol 62 (4) ◽  
Author(s):  
Reda Sammour

AbstractThe main goal of this work was to make the cDNA-encoding subunit G2 of soybean glycinin, capable of self-assembly in vitro and rich in methionine residues. Two mutants (pSP65/G4SacG2 and pSP65/G4SacG2HG4) were therefore constructed. The constructed mutants were successfully assembled in vitro into oligomers similar to those occurred in the seed. The successful self-assembly was due to the introduction of Sac fragment of Gy4 (the codons of the first 21 amino acid residues), which reported to be the key element in self-assembly into trimers. The mutant pSP65/G4SacG2HG4 included the acidic chain of Gy4 (HG4), which was previously molecularly modified to have three methionine residues. This mutant will be useful in the efforts to improve the seed quality.


1971 ◽  
Vol 122 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Janet C. Miller ◽  
S. G. Waley

1. The nature of the subunits in rabbit muscle triose phosphate isomerase has been investigated. 2. Amino acid analyses show that there are five cysteine residues and two methionine residues/subunit. 3. The amino acid sequences around the cysteine residues have been determined; these account for about 75 residues. 4. Cleavage at the methionine residues with cyanogen bromide gave three fragments. 5. These results show that the subunits correspond to polypeptide chains, containing about 230 amino acid residues. The chains in triose phosphate isomerase seem to be shorter than those of other glycolytic enzymes.


1986 ◽  
Vol 240 (1) ◽  
pp. 305-308 ◽  
Author(s):  
I S Fulcher ◽  
D J Pappin ◽  
A J Kenny

Endopeptidase-24.11 (EC 3.4.24.11), a widely distributed ectoenzyme, was isolated from pig kidneys by detergent solubilization of membranes and immuno-affinity chromatography. In all, 12 preparations of the enzyme were submitted to solid-phase sequencing, yielding a consensus sequence of 25 amino acid residues of the N-terminal segment. Some samples were treated with either trypsin or Staphylococcus aureus V8 proteinase before sequencing. There were four lysine and one arginine residues in the first nine positions. This segment was susceptible to hydrolysis by trypsin and, in some samples, to endogenous proteinases. From residue 19 onwards, the sequence became intensely hydrophobic. There was a striking homology with the N-terminal sequence of pro-sucrase-isomaltase. From Lys7 to Leu20 there were seven identical amino acid residues and four conservative substitutions. We suggest that endopeptidase-24.11 is topologically similar to this glycosidase, the N-terminus at the cytoplasmic face and hydrophobic segment serving the roles of both signal peptide and hydrophobic anchor.


1977 ◽  
Vol 161 (1) ◽  
pp. 189-192 ◽  
Author(s):  
R A Maurer ◽  
J Gorski ◽  
D J McKean

Rat pituitary mRNA was used to direct the cell-free synthesis of pre-prolactin labelled with [4,5-3H]leucine and either [35S] methioninc or [35S] cystine. Sequence analysis of the labelled protein indicates that pre-prolactin has 29 amino acid residues joined to the N-terminus of the prolactin sequence. Leucine residues were found at positions 13, 14, 15, 16, 21 and 22, methionine residues at positions 1, 17 and 18, and a cysteine residue at position 24 of the precursor sequence, and this partial sequence shows considerable similarity with other precursors that have been sequenced.


2003 ◽  
Vol 50 (2) ◽  
pp. 567-572 ◽  
Author(s):  
Paulina Nawłoka ◽  
Małgorzata Kalinowska ◽  
Cezary Paczkowski ◽  
Zdzisław A Wojciechowski

Effects of several chemical probes selectively modifying various amino-acid residues on the activity of UDP-glucose : solasodine glucosyltransferase from eggplant leaves was studied. It was shown that diethylpyrocarbonate (DEPC), a specific modifier of histidine residues, was strongly inhibitory. However, in the presence of excessive amounts of the enzyme substrates, i.e. either UDP-glucose or solasodine, the inhibitory effect of DEPC was much weaker indicating that histidine (or histidines) are present in the active site of the enzyme. Our results suggest also that unmodified residues of glutamic (or aspartic) acid, lysine, cysteine, tyrosine and tryptophan are necessary for full activity of the enzyme. Reagents modifying serine and arginine residues have no effect on the enzyme activity.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 257 ◽  
Author(s):  
Damian Neubauer ◽  
Maciej Jaśkiewicz ◽  
Marta Bauer ◽  
Krzysztof Gołacki ◽  
Wojciech Kamysz

Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.


1980 ◽  
Vol 185 (3) ◽  
pp. 611-616 ◽  
Author(s):  
K M Baig ◽  
M Vlaovic ◽  
R A Anwar

All the desmosine-containing elastolytic peptides of bovine ligamentum-nuchae elastin have now been examined for amino acid sequences C-terminal to the cross-links. In addition, amino acid residues C-terminal to lysine residues in bovine tropoelastin were also examined. No tyrosine C-terminal to cross-links in bovine elastin or C-terminal to lysine in tropoelastin was detected. Apparently all the tyrosine residues C-terminal to lysine residues in pig tropoelastin are replaced with phenylalanine in bovine tropoelastin. All the data presented are consistent with the scheme proposed for the formation of desmosine and isodesmosine cross-links of elastin by Gerber & Anwar [(1975) Biochem. J. 149, 685-695].


Sign in / Sign up

Export Citation Format

Share Document