scholarly journals Mechanism of 3-phenylpyruvate-induced insulin release from isolated pancreatic islets

1981 ◽  
Vol 198 (2) ◽  
pp. 353-356 ◽  
Author(s):  
U Panten ◽  
J Langer

3-Phenylpyruvate evoked a monophasic insulin release from perifused mouse islets. L-Phenylalanine was not an insulin secretagogue and was oxidized by islets at a very low rate, suggesting that 3-phenylpyruvate does not trigger insulin release by enhancing production of reducing equivalents. Moreover, allosteric activation of glutamate dehydrogenase does not play a role in 3-phenylpyruvate-induced insulin secretion.

2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


1994 ◽  
Vol 131 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Claes-Göran Östenson ◽  
Bo Ahrén ◽  
Sven Karlsson ◽  
Jens Knudsen ◽  
Suad Efendic

Östenson C-G, Ahrén B, Karlsson S, Knudsen J, Efendic S. Inhibition by rat diazepam-binding inhibitor/ acyl-CoA-binding protein of glucose-induced insulin secretion in the rat. Eur J Endocrinol 1994;131:201–4. ISSN 0804–4643 Diazepam-binding inhibitor (DBI) has been localized immunohistochemically in many organs. In porcine and rat pancreas, DBI is present in non-B-cells of the pancreatic islets. Porcine peptide also has been shown to suppress insulin secretion from rat pancreas in vitro. Recently, acyl-CoA-binding protein (ACBP) was isolated from rat liver and shown to be identical structurally to DBI isolated from rat brain. Using this rat DBI/ACBP, we have studied its effects on glucose-stimulated insulin secretion in the rat, both in vivo and in isolated pancreatic islets. Infusion iv of rDBI/ACBP (25 pmol/min) during glucose stimulation induced a moderate and transient reduction of plasma insulin levels. Moreover, rDBI/ACBP suppressed insulin release from batch-incubated isolated islets, stimulated by 16.7 mmol/l glucose, by 24% at 10 nmol/l (p < 0.05) and by 40% at 100 nmol/l (p < 0.01). The peptide (100 nmol/l) also inhibited the insulin response to glucose (16.7 mmol/l) from perifused rat islets by 31% (p < 0.05), mainly by affecting the acute-phase response. Finally, incubation of isolated islets in the presence of rDBI/ACBP antiserum (diluted 1:100 and 1:300) augmented the insulin response to 16.7 mmol/l glucose (p < 0.05 or even less). We conclude that rDBI/ACBP, administered iv or added to the incubation media, suppresses insulin secretion in the rat but that the effect is moderate despite the high concentration used. It is therefore unlikely that the peptide modulates islet hormone release, acting as a classical hormone via the circulation. However, the occurrence of DBI/ACBP in the islets and the enhancing effect by the rDBI/ACBP antibodies on glucose-stimulated insulin release suggest that the peptide is a local modulator of insulin secretion. C-G Östenson, Department of Endocrinology, Karolinska Hospital, S-171 76 Stockholm, Sweden


2000 ◽  
Vol 164 (1) ◽  
pp. 13-19 ◽  
Author(s):  
EG Siegel ◽  
A Seidenstucker ◽  
B Gallwitz ◽  
F Schmitz ◽  
A Reinecke-Luthge ◽  
...  

Liver cirrhosis is often accompanied by a disturbed carbohydrate metabolism similar to type 2 diabetes. To investigate the severity of the defect in insulin secretion in this form of diabetes, we measured insulin release from isolated pancreatic islets of rats with CCl(4)-phenobarbital-induced liver cirrhosis. Cirrhosis was confirmed by clinical signs, elevated liver enzymes and histology. Fasting venous plasma glucose concentrations were equal in rats with liver cirrhosis and in controls. Plasma insulin and glucagon concentrations were significantly greater (P<0.01) in cirrhotic rats than in control animals. Glucose (16.7 mM)-induced stimulation of insulin release from pancreatic islets revealed a twofold increase in control and cirrhotic rats. Basal and stimulated insulin secretion, however, were significantly lower in cirrhotic animals. The incretin hormone, glucagon-like peptide-1 (GLP-1), has therapeutic potential for the treatment of type 2 diabetes. Therefore, islets from control and cirrhotic animals were incubated with GLP-1 in concentrations from 10(-)(11) to 10(-)(6) M. GLP-1 stimulated insulin release in a concentration-dependent manner. In islets from cirrhotic rats, basal and stimulated insulin secretion was blunted compared with controls. These data show that the hyperinsulinemia observed in liver cirrhosis is not due to an increase of insulin secretion from islets, but could be explained by decreased hepatic clearance of insulin. GLP-1 may ameliorate diabetes in patients with liver cirrhosis.


1985 ◽  
Vol 110 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Birger Petersson ◽  
Claes Hellerström

Abstract. Cysteamine (CSH; β-mercaptoethylamine) is known to deplete pancreatic somatostatin without affecting the insulin or glucagon content. It may therefore be useful for studies of intra-islet regulation of hormone release. In the present study injection of CSH (60 mg/kg body weight) to mice decreased the somatostatin content of their isolated pancreatic islets to 50% in 1 h and 30% in 4 h as compared to islets of non-injected controls. Exposure of isolated mouse islets to CSH (100 μg/ml) for either 0.5 h followed by incubation in control medium for 3.5 h, or continuously for 4 h, decreased the somatostatin content to about 40% of the controls. There was no change in the islet content of insulin or glucagon. Islets pretreated with CSH (100 μg/ml) for 1 h in vitro showed a decreased glucose stimulation of both oxygen consumption and glucose oxidation. Measurements of insulin release after a similar preincubation of the islets indicated an increased basal release and an attenuated glucose stimulation. It is concluded that CSH rapidly decreases islet somatostatin both in vivo and in vitro. This depletion may lead to a loss of tonic inhibition by islet somatostatin on basal insulin release. It is, however, more plausible that the increased basal insulin release reflected a direct effect of CSH on the islet β-cells.


1976 ◽  
Vol 158 (2) ◽  
pp. 335-340 ◽  
Author(s):  
K Capito ◽  
C J Hedeskov

Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.


2005 ◽  
Vol 37 (11) ◽  
pp. 662-665 ◽  
Author(s):  
M. L. Grillo ◽  
A. P. Jacobus ◽  
R. Scalco ◽  
F. Amaral ◽  
D. O. Rodrigues ◽  
...  

Endocrinology ◽  
2018 ◽  
Vol 159 (11) ◽  
pp. 3747-3760 ◽  
Author(s):  
Ishrat Jahan ◽  
Kathryn L Corbin ◽  
Avery M Bogart ◽  
Nicholas B Whitticar ◽  
Christopher D Waters ◽  
...  

Abstract An early sign of islet failure in type 2 diabetes (T2D) is the loss of normal patterns of pulsatile insulin release. Disruptions in pulsatility are associated with a left shift in glucose sensing that can cause excessive insulin release in low glucose (relative hyperinsulinemia, a hallmark of early T2D) and β-cell exhaustion, leading to inadequate insulin release during hyperglycemia. Our hypothesis was that reducing excessive glucokinase activity in diabetic islets would improve their function. Isolated mouse islets were exposed to glucose and varying concentrations of the glucokinase inhibitor d-mannoheptulose (MH) to examine changes in intracellular calcium ([Ca2+]i) and insulin secretion. Acutely exposing islets from control CD-1 mice to MH in high glucose (20 mM) dose dependently reduced the size of [Ca2+]i oscillations detected by fura-2 acetoxymethyl. Glucokinase activation in low glucose (3 mM) had the opposite effect. We then treated islets from male and female db/db mice (age, 4 to 8 weeks) and heterozygous controls overnight with 0 to 10 mM MH to determine that 1 mM MH produced optimal oscillations. We then used 1 mM MH overnight to measure [Ca2+]i and insulin simultaneously in db/db islets. MH restored oscillations and increased insulin secretion. Insulin secretion rates correlated with MH-induced increases in amplitude of [Ca2+]i oscillations (R2 = 0.57, P &lt; 0.01, n = 10) but not with mean [Ca2+]i levels in islets (R2 = 0.05, not significant). Our findings show that correcting glucose sensing can restore proper pulsatility to diabetic islets and improved pulsatility correlates with enhanced insulin secretion.


1990 ◽  
Vol 258 (6) ◽  
pp. E975-E984 ◽  
Author(s):  
G. Z. Fadda ◽  
M. Akmal ◽  
L. G. Lipson ◽  
S. G. Massry

Indirect evidence indicates that parathyroid hormone (PTH) interacts with pancreatic islets and modulates their insulin secretion. This property of PTH has been implicated in the genesis of impaired insulin release in chronic renal failure. We examined the direct effect of PTH-(1-84) and PTH-(1-34) on insulin release using in vitro static incubation and dynamic perifusion of pancreatic islets from normal rats. Both moieties of the hormone stimulated in a dose-dependent manner glucose-induced insulin release but higher doses inhibited glucose-induced insulin release. This action of PTH was modulated by the calcium concentration in the media. The stimulatory effect of PTH was abolished by its inactivation and blocked by its antagonist [Tyr-34]bPTH-(7-34)NH2. PTH also augmented phorbol ester (TPA)-induced insulin release, stimulated adenosine 3',5'-cyclic monophosphate (cAMP) generation by pancreatic islets, and significantly increased (+50 +/- 2.7%, P less than 0.01) their cytosolic calcium. Verapamil inhibited the stimulatory effect of PTH on insulin release. The data show that 1) pancreatic islets are a PTH target and may have PTH receptors, 2) stimulation of glucose-induced insulin release by PTH is mediated by a rise in cytosolic calcium, 3) stimulation of cAMP production by PTH and a potential indirect activation of protein kinase C by PTH may also contribute to the stimulatory effect on glucose-induced insulin release, and 4) this action of PTH requires calcium in incubation or perifusion media.


1996 ◽  
Vol 271 (4) ◽  
pp. C1098-C1102 ◽  
Author(s):  
A. Sjoholm

Preceding the onset of insulin-dependent diabetes mellitus, pancreatic islets are infiltrated by macrophages secreting interleukin-1 beta, which exerts cytotoxic and inhibitory actions on islet beta-cell insulin secretion through induction of nitric oxide (NO) synthesis. The influence of the NO donor 3-morpholinosydnonimine (SIN-1) on insulin secretion from isolated pancreatic islets in response to various secretagogues was investigated. Stimulation of insulin release evoked by glucose, phospholipase C activation with carbachol, and protein kinase C activation with phorbol ester were obtained by SIN-1, whereas the response to adenylyl cyclase activation or K(+)-induced depolarization was not affected. It is concluded that enzymes involved in glucose catabolism, phospholipase C or protein kinase C, may be targeted by NO. Reversal of SIN-1 inhibition of glucose-stimulated insulin release by dithiothreitol suggests that NO may inhibit insulin secretion partly by S-nitrosylation of thiol residues in key proteins in the stimulus-secretion coupling. These adverse effects of NO on the beta-cell stimulus-secretion coupling may be of importance for the development of the impaired insulin secretion characterizing diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document